Properties

Label 260.63
Modulus 260260
Conductor 260260
Order 1212
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(260, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,9,7]))
 
pari: [g,chi] = znchar(Mod(63,260))
 

Basic properties

Modulus: 260260
Conductor: 260260
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 260.be

χ260(63,)\chi_{260}(63,\cdot) χ260(67,)\chi_{260}(67,\cdot) χ260(163,)\chi_{260}(163,\cdot) χ260(227,)\chi_{260}(227,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.0.14337283152296000000000.2

Values on generators

(131,157,41)(131,157,41)(1,i,e(712))(-1,-i,e\left(\frac{7}{12}\right))

First values

aa 1-1113377991111171719192121232327272929
χ260(63,a) \chi_{ 260 }(63, a) 1-111e(112)e\left(\frac{1}{12}\right)e(23)e\left(\frac{2}{3}\right)e(16)e\left(\frac{1}{6}\right)e(712)e\left(\frac{7}{12}\right)e(1112)e\left(\frac{11}{12}\right)e(1112)e\left(\frac{11}{12}\right)i-ie(712)e\left(\frac{7}{12}\right)iie(56)e\left(\frac{5}{6}\right)
sage: chi.jacobi_sum(n)
 
χ260(63,a)   \chi_{ 260 }(63,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ260(63,))   \tau_{ a }( \chi_{ 260 }(63,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ260(63,),χ260(n,))   J(\chi_{ 260 }(63,·),\chi_{ 260 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ260(63,))  K(a,b,\chi_{ 260 }(63,·)) \; at   a,b=\; a,b = e.g. 1,2