L(s) = 1 | + (0.866 − 0.5i)5-s + (0.5 − 0.866i)7-s + (0.5 − 0.866i)11-s + (0.866 − 0.5i)13-s − i·17-s − i·19-s + (0.866 − 0.5i)23-s + (0.5 − 0.866i)25-s + (0.866 + 0.5i)29-s + (−0.866 + 0.5i)31-s − i·35-s + (0.5 + 0.866i)41-s + (0.866 + 0.5i)43-s + (0.5 − 0.866i)47-s + (−0.5 − 0.866i)49-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)5-s + (0.5 − 0.866i)7-s + (0.5 − 0.866i)11-s + (0.866 − 0.5i)13-s − i·17-s − i·19-s + (0.866 − 0.5i)23-s + (0.5 − 0.866i)25-s + (0.866 + 0.5i)29-s + (−0.866 + 0.5i)31-s − i·35-s + (0.5 + 0.866i)41-s + (0.866 + 0.5i)43-s + (0.5 − 0.866i)47-s + (−0.5 − 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.00469 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.00469 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.766382431 - 1.774690022i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.766382431 - 1.774690022i\) |
\(L(1)\) |
\(\approx\) |
\(1.372776208 - 0.5322521132i\) |
\(L(1)\) |
\(\approx\) |
\(1.372776208 - 0.5322521132i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 \) |
good | 5 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.866 - 0.5i)T \) |
| 17 | \( 1 - iT \) |
| 19 | \( 1 - iT \) |
| 23 | \( 1 + (0.866 - 0.5i)T \) |
| 29 | \( 1 + (0.866 + 0.5i)T \) |
| 31 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + (0.5 + 0.866i)T \) |
| 43 | \( 1 + (0.866 + 0.5i)T \) |
| 47 | \( 1 + (0.5 - 0.866i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (-0.866 + 0.5i)T \) |
| 61 | \( 1 + (0.866 + 0.5i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.866 - 0.5i)T \) |
| 83 | \( 1 + (-0.5 + 0.866i)T \) |
| 89 | \( 1 + iT \) |
| 97 | \( 1 + (0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.12036079400943297994765235167, −18.89840443692165663860271517793, −18.013032921878938258335767715579, −17.434469084061645949081382882343, −16.93145422455185461884695097167, −15.7793971369093025734200102035, −15.222219735173119536510809079871, −14.347313092829538888458399636124, −14.13669041516455420072330819573, −12.939032961079911495822919620971, −12.4831027862986491254630370843, −11.52605930375484759270836658879, −10.899070249666062524045004990761, −10.112842020238915007694498969924, −9.290583925213968427040470564312, −8.80410191462067532725137665438, −7.83176256242074759617698476368, −6.97969968244603073749773779563, −6.02344593542957554977914662875, −5.78574694874915221056812607296, −4.64944611480502380781021099129, −3.82098070699647417158316387455, −2.82569627987802659236938358951, −1.79405877476479143741865021213, −1.54064663794710485615933296089,
0.914178274836057461204262265511, 1.17000475798230121632656774398, 2.54590682213914660467419765622, 3.30601925785161356518528587980, 4.39351936620470391090841114634, 5.02304656785010401996367021096, 5.83322282399164938105185183726, 6.657323030963331929297736748220, 7.35415452305924157999303563802, 8.472733989029010354345460494069, 8.88363697988471527216513570843, 9.68536924495506663695115101613, 10.7028359639166754338951224287, 11.0165027269347288081844288130, 11.930062950959864106024411289144, 13.05755237470214472412182970208, 13.35589358882140892664366748127, 14.152488723605171009756884880219, 14.59559940450336301352088835776, 15.880411696455929182792362564648, 16.32932021507523304153970076821, 17.06239514496007555173808014830, 17.748426500740988504756933390039, 18.197233197653730697823916005632, 19.172310619432261037198595602573