Properties

Label 1-2664-2664.43-r0-0-0
Degree 11
Conductor 26642664
Sign 0.00469+0.999i0.00469 + 0.999i
Analytic cond. 12.371512.3715
Root an. cond. 12.371512.3715
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 + 0.5i)5-s + (0.5 + 0.866i)7-s + (0.5 + 0.866i)11-s + (0.866 + 0.5i)13-s + i·17-s + i·19-s + (0.866 + 0.5i)23-s + (0.5 + 0.866i)25-s + (0.866 − 0.5i)29-s + (−0.866 − 0.5i)31-s + i·35-s + (0.5 − 0.866i)41-s + (0.866 − 0.5i)43-s + (0.5 + 0.866i)47-s + (−0.5 + 0.866i)49-s + ⋯
L(s)  = 1  + (0.866 + 0.5i)5-s + (0.5 + 0.866i)7-s + (0.5 + 0.866i)11-s + (0.866 + 0.5i)13-s + i·17-s + i·19-s + (0.866 + 0.5i)23-s + (0.5 + 0.866i)25-s + (0.866 − 0.5i)29-s + (−0.866 − 0.5i)31-s + i·35-s + (0.5 − 0.866i)41-s + (0.866 − 0.5i)43-s + (0.5 + 0.866i)47-s + (−0.5 + 0.866i)49-s + ⋯

Functional equation

Λ(s)=(2664s/2ΓR(s)L(s)=((0.00469+0.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.00469 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(2664s/2ΓR(s)L(s)=((0.00469+0.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.00469 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 26642664    =    2332372^{3} \cdot 3^{2} \cdot 37
Sign: 0.00469+0.999i0.00469 + 0.999i
Analytic conductor: 12.371512.3715
Root analytic conductor: 12.371512.3715
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ2664(43,)\chi_{2664} (43, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 2664, (0: ), 0.00469+0.999i)(1,\ 2664,\ (0:\ ),\ 0.00469 + 0.999i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.766382431+1.774690022i1.766382431 + 1.774690022i
L(12)L(\frac12) \approx 1.766382431+1.774690022i1.766382431 + 1.774690022i
L(1)L(1) \approx 1.372776208+0.5322521132i1.372776208 + 0.5322521132i
L(1)L(1) \approx 1.372776208+0.5322521132i1.372776208 + 0.5322521132i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
37 1 1
good5 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
7 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
11 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
13 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
17 1+iT 1 + iT
19 1+iT 1 + iT
23 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
29 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
31 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
41 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
43 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
47 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
53 1T 1 - T
59 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
61 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
67 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
71 1T 1 - T
73 1T 1 - T
79 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
83 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
89 1iT 1 - iT
97 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−19.172310619432261037198595602573, −18.197233197653730697823916005632, −17.748426500740988504756933390039, −17.06239514496007555173808014830, −16.32932021507523304153970076821, −15.880411696455929182792362564648, −14.59559940450336301352088835776, −14.152488723605171009756884880219, −13.35589358882140892664366748127, −13.05755237470214472412182970208, −11.930062950959864106024411289144, −11.0165027269347288081844288130, −10.7028359639166754338951224287, −9.68536924495506663695115101613, −8.88363697988471527216513570843, −8.472733989029010354345460494069, −7.35415452305924157999303563802, −6.657323030963331929297736748220, −5.83322282399164938105185183726, −5.02304656785010401996367021096, −4.39351936620470391090841114634, −3.30601925785161356518528587980, −2.54590682213914660467419765622, −1.17000475798230121632656774398, −0.914178274836057461204262265511, 1.54064663794710485615933296089, 1.79405877476479143741865021213, 2.82569627987802659236938358951, 3.82098070699647417158316387455, 4.64944611480502380781021099129, 5.78574694874915221056812607296, 6.02344593542957554977914662875, 6.97969968244603073749773779563, 7.83176256242074759617698476368, 8.80410191462067532725137665438, 9.290583925213968427040470564312, 10.112842020238915007694498969924, 10.899070249666062524045004990761, 11.52605930375484759270836658879, 12.4831027862986491254630370843, 12.939032961079911495822919620971, 14.13669041516455420072330819573, 14.347313092829538888458399636124, 15.222219735173119536510809079871, 15.7793971369093025734200102035, 16.93145422455185461884695097167, 17.434469084061645949081382882343, 18.013032921878938258335767715579, 18.89840443692165663860271517793, 19.12036079400943297994765235167

Graph of the ZZ-function along the critical line