L(s) = 1 | + (0.866 + 0.5i)5-s + (0.5 + 0.866i)7-s + (0.5 + 0.866i)11-s + (0.866 + 0.5i)13-s + i·17-s + i·19-s + (0.866 + 0.5i)23-s + (0.5 + 0.866i)25-s + (0.866 − 0.5i)29-s + (−0.866 − 0.5i)31-s + i·35-s + (0.5 − 0.866i)41-s + (0.866 − 0.5i)43-s + (0.5 + 0.866i)47-s + (−0.5 + 0.866i)49-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)5-s + (0.5 + 0.866i)7-s + (0.5 + 0.866i)11-s + (0.866 + 0.5i)13-s + i·17-s + i·19-s + (0.866 + 0.5i)23-s + (0.5 + 0.866i)25-s + (0.866 − 0.5i)29-s + (−0.866 − 0.5i)31-s + i·35-s + (0.5 − 0.866i)41-s + (0.866 − 0.5i)43-s + (0.5 + 0.866i)47-s + (−0.5 + 0.866i)49-s + ⋯ |
Λ(s)=(=(2664s/2ΓR(s)L(s)(0.00469+0.999i)Λ(1−s)
Λ(s)=(=(2664s/2ΓR(s)L(s)(0.00469+0.999i)Λ(1−s)
Degree: |
1 |
Conductor: |
2664
= 23⋅32⋅37
|
Sign: |
0.00469+0.999i
|
Analytic conductor: |
12.3715 |
Root analytic conductor: |
12.3715 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2664(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2664, (0: ), 0.00469+0.999i)
|
Particular Values
L(21) |
≈ |
1.766382431+1.774690022i |
L(21) |
≈ |
1.766382431+1.774690022i |
L(1) |
≈ |
1.372776208+0.5322521132i |
L(1) |
≈ |
1.372776208+0.5322521132i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 37 | 1 |
good | 5 | 1+(0.866+0.5i)T |
| 7 | 1+(0.5+0.866i)T |
| 11 | 1+(0.5+0.866i)T |
| 13 | 1+(0.866+0.5i)T |
| 17 | 1+iT |
| 19 | 1+iT |
| 23 | 1+(0.866+0.5i)T |
| 29 | 1+(0.866−0.5i)T |
| 31 | 1+(−0.866−0.5i)T |
| 41 | 1+(0.5−0.866i)T |
| 43 | 1+(0.866−0.5i)T |
| 47 | 1+(0.5+0.866i)T |
| 53 | 1−T |
| 59 | 1+(−0.866−0.5i)T |
| 61 | 1+(0.866−0.5i)T |
| 67 | 1+(0.5−0.866i)T |
| 71 | 1−T |
| 73 | 1−T |
| 79 | 1+(−0.866+0.5i)T |
| 83 | 1+(−0.5−0.866i)T |
| 89 | 1−iT |
| 97 | 1+(0.866−0.5i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.172310619432261037198595602573, −18.197233197653730697823916005632, −17.748426500740988504756933390039, −17.06239514496007555173808014830, −16.32932021507523304153970076821, −15.880411696455929182792362564648, −14.59559940450336301352088835776, −14.152488723605171009756884880219, −13.35589358882140892664366748127, −13.05755237470214472412182970208, −11.930062950959864106024411289144, −11.0165027269347288081844288130, −10.7028359639166754338951224287, −9.68536924495506663695115101613, −8.88363697988471527216513570843, −8.472733989029010354345460494069, −7.35415452305924157999303563802, −6.657323030963331929297736748220, −5.83322282399164938105185183726, −5.02304656785010401996367021096, −4.39351936620470391090841114634, −3.30601925785161356518528587980, −2.54590682213914660467419765622, −1.17000475798230121632656774398, −0.914178274836057461204262265511,
1.54064663794710485615933296089, 1.79405877476479143741865021213, 2.82569627987802659236938358951, 3.82098070699647417158316387455, 4.64944611480502380781021099129, 5.78574694874915221056812607296, 6.02344593542957554977914662875, 6.97969968244603073749773779563, 7.83176256242074759617698476368, 8.80410191462067532725137665438, 9.290583925213968427040470564312, 10.112842020238915007694498969924, 10.899070249666062524045004990761, 11.52605930375484759270836658879, 12.4831027862986491254630370843, 12.939032961079911495822919620971, 14.13669041516455420072330819573, 14.347313092829538888458399636124, 15.222219735173119536510809079871, 15.7793971369093025734200102035, 16.93145422455185461884695097167, 17.434469084061645949081382882343, 18.013032921878938258335767715579, 18.89840443692165663860271517793, 19.12036079400943297994765235167