L(s) = 1 | + (−0.342 − 0.939i)5-s + (0.173 − 0.984i)7-s + (0.5 − 0.866i)11-s + (−0.984 − 0.173i)13-s + (−0.342 + 0.939i)17-s + (−0.984 − 0.173i)19-s + (−0.866 + 0.5i)23-s + (−0.766 + 0.642i)25-s + (0.866 + 0.5i)29-s + (0.866 + 0.5i)31-s + (−0.984 + 0.173i)35-s + (0.173 − 0.984i)41-s + (−0.866 + 0.5i)43-s − 47-s + (−0.939 − 0.342i)49-s + ⋯ |
L(s) = 1 | + (−0.342 − 0.939i)5-s + (0.173 − 0.984i)7-s + (0.5 − 0.866i)11-s + (−0.984 − 0.173i)13-s + (−0.342 + 0.939i)17-s + (−0.984 − 0.173i)19-s + (−0.866 + 0.5i)23-s + (−0.766 + 0.642i)25-s + (0.866 + 0.5i)29-s + (0.866 + 0.5i)31-s + (−0.984 + 0.173i)35-s + (0.173 − 0.984i)41-s + (−0.866 + 0.5i)43-s − 47-s + (−0.939 − 0.342i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.159 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.159 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1063666151 + 0.1249257499i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1063666151 + 0.1249257499i\) |
\(L(1)\) |
\(\approx\) |
\(0.7585431822 - 0.2192755646i\) |
\(L(1)\) |
\(\approx\) |
\(0.7585431822 - 0.2192755646i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 \) |
good | 5 | \( 1 + (-0.342 - 0.939i)T \) |
| 7 | \( 1 + (0.173 - 0.984i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.984 - 0.173i)T \) |
| 17 | \( 1 + (-0.342 + 0.939i)T \) |
| 19 | \( 1 + (-0.984 - 0.173i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + (0.866 + 0.5i)T \) |
| 31 | \( 1 + (0.866 + 0.5i)T \) |
| 41 | \( 1 + (0.173 - 0.984i)T \) |
| 43 | \( 1 + (-0.866 + 0.5i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (0.766 - 0.642i)T \) |
| 59 | \( 1 + (-0.984 + 0.173i)T \) |
| 61 | \( 1 + (-0.642 + 0.766i)T \) |
| 67 | \( 1 + (-0.939 + 0.342i)T \) |
| 71 | \( 1 + (-0.173 + 0.984i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (0.984 + 0.173i)T \) |
| 83 | \( 1 + (0.173 + 0.984i)T \) |
| 89 | \( 1 + (0.642 + 0.766i)T \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.13917728228059924570631486248, −18.357697613696450320863304503876, −17.879090918345086766436209947449, −17.123636898221716816380732021076, −16.20702025724596560686651936919, −15.32067389740730253582280051262, −14.97224824922215182166393697016, −14.34890956727427669322001799130, −13.55025074909861522672037253981, −12.38855647474892004232801831963, −11.96302738383135921113464532323, −11.43805178166847545809503388023, −10.35562553293041235653994541970, −9.8220604136507480544377047689, −9.02597008340267074067501889821, −8.09680971081403518680871358163, −7.45093647836336975994082365073, −6.50353884638863420583750250648, −6.159679568431212537349951508074, −4.74327599563276546091203948567, −4.45711278273509181058416587795, −3.166008590786255852951666880659, −2.42501865508862742996717799572, −1.878478285048580787266842078884, −0.054062523317448217638035289405,
1.0403569031286043170706319099, 1.83279853234796858894215279018, 3.10998516183033193670900258034, 4.04755177324360537193800351108, 4.48832919642972825567015984412, 5.38992162873383024579039165098, 6.340795110537366190108157446757, 7.07612542821534744330847290319, 8.12413115058605738957007764469, 8.39728440688342327969987905899, 9.34543116124594793184746351051, 10.2347796288342088834054946958, 10.81183550129270327352020847765, 11.77888383537995203025953940880, 12.29811365657586243566705157061, 13.1818461446410143256782275184, 13.70550427730226016461956690225, 14.54958617335519323414791757574, 15.247977896024993628719360612466, 16.215642003885223226981992171716, 16.65166048738450244918885511240, 17.38768613639008850646495903920, 17.75964643117056677742347141220, 19.19815213627936393017082560648, 19.62023575357459646130607137432