sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2664, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,18,6,35]))
pari:[g,chi] = znchar(Mod(389,2664))
Modulus: | 2664 | |
Conductor: | 2664 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 36 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ2664(389,⋅)
χ2664(605,⋅)
χ2664(725,⋅)
χ2664(797,⋅)
χ2664(893,⋅)
χ2664(1253,⋅)
χ2664(1445,⋅)
χ2664(1541,⋅)
χ2664(1589,⋅)
χ2664(1757,⋅)
χ2664(2237,⋅)
χ2664(2309,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1999,1333,2369,1297) → (1,−1,e(61),e(3635))
a |
−1 | 1 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 25 | 29 | 31 |
χ2664(389,a) |
1 | 1 | e(3625) | e(97) | e(65) | e(3619) | e(3611) | e(3619) | e(125) | e(187) | e(121) | e(121) |
sage:chi.jacobi_sum(n)