Properties

Label 2664.gy
Modulus 26642664
Conductor 26642664
Order 3636
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2664, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,18,6,35]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(389,2664))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 26642664
Conductor: 26642664
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3636
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ36)\Q(\zeta_{36})
Fixed field: 36.36.8076586766812485233558939287824714831423086707479290364185133590224962133001181886423028704739328.1

Characters in Galois orbit

Character 1-1 11 55 77 1111 1313 1717 1919 2323 2525 2929 3131
χ2664(389,)\chi_{2664}(389,\cdot) 11 11 e(2536)e\left(\frac{25}{36}\right) e(79)e\left(\frac{7}{9}\right) e(56)e\left(\frac{5}{6}\right) e(1936)e\left(\frac{19}{36}\right) e(1136)e\left(\frac{11}{36}\right) e(1936)e\left(\frac{19}{36}\right) e(512)e\left(\frac{5}{12}\right) e(718)e\left(\frac{7}{18}\right) e(112)e\left(\frac{1}{12}\right) e(112)e\left(\frac{1}{12}\right)
χ2664(605,)\chi_{2664}(605,\cdot) 11 11 e(1336)e\left(\frac{13}{36}\right) e(49)e\left(\frac{4}{9}\right) e(56)e\left(\frac{5}{6}\right) e(736)e\left(\frac{7}{36}\right) e(2336)e\left(\frac{23}{36}\right) e(736)e\left(\frac{7}{36}\right) e(512)e\left(\frac{5}{12}\right) e(1318)e\left(\frac{13}{18}\right) e(112)e\left(\frac{1}{12}\right) e(112)e\left(\frac{1}{12}\right)
χ2664(725,)\chi_{2664}(725,\cdot) 11 11 e(1736)e\left(\frac{17}{36}\right) e(89)e\left(\frac{8}{9}\right) e(16)e\left(\frac{1}{6}\right) e(2336)e\left(\frac{23}{36}\right) e(1936)e\left(\frac{19}{36}\right) e(2336)e\left(\frac{23}{36}\right) e(112)e\left(\frac{1}{12}\right) e(1718)e\left(\frac{17}{18}\right) e(512)e\left(\frac{5}{12}\right) e(512)e\left(\frac{5}{12}\right)
χ2664(797,)\chi_{2664}(797,\cdot) 11 11 e(2336)e\left(\frac{23}{36}\right) e(59)e\left(\frac{5}{9}\right) e(16)e\left(\frac{1}{6}\right) e(2936)e\left(\frac{29}{36}\right) e(1336)e\left(\frac{13}{36}\right) e(2936)e\left(\frac{29}{36}\right) e(712)e\left(\frac{7}{12}\right) e(518)e\left(\frac{5}{18}\right) e(1112)e\left(\frac{11}{12}\right) e(1112)e\left(\frac{11}{12}\right)
χ2664(893,)\chi_{2664}(893,\cdot) 11 11 e(136)e\left(\frac{1}{36}\right) e(19)e\left(\frac{1}{9}\right) e(56)e\left(\frac{5}{6}\right) e(3136)e\left(\frac{31}{36}\right) e(3536)e\left(\frac{35}{36}\right) e(3136)e\left(\frac{31}{36}\right) e(512)e\left(\frac{5}{12}\right) e(118)e\left(\frac{1}{18}\right) e(112)e\left(\frac{1}{12}\right) e(112)e\left(\frac{1}{12}\right)
χ2664(1253,)\chi_{2664}(1253,\cdot) 11 11 e(1936)e\left(\frac{19}{36}\right) e(19)e\left(\frac{1}{9}\right) e(56)e\left(\frac{5}{6}\right) e(1336)e\left(\frac{13}{36}\right) e(1736)e\left(\frac{17}{36}\right) e(1336)e\left(\frac{13}{36}\right) e(1112)e\left(\frac{11}{12}\right) e(118)e\left(\frac{1}{18}\right) e(712)e\left(\frac{7}{12}\right) e(712)e\left(\frac{7}{12}\right)
χ2664(1445,)\chi_{2664}(1445,\cdot) 11 11 e(1136)e\left(\frac{11}{36}\right) e(29)e\left(\frac{2}{9}\right) e(16)e\left(\frac{1}{6}\right) e(1736)e\left(\frac{17}{36}\right) e(2536)e\left(\frac{25}{36}\right) e(1736)e\left(\frac{17}{36}\right) e(712)e\left(\frac{7}{12}\right) e(1118)e\left(\frac{11}{18}\right) e(1112)e\left(\frac{11}{12}\right) e(1112)e\left(\frac{11}{12}\right)
χ2664(1541,)\chi_{2664}(1541,\cdot) 11 11 e(3136)e\left(\frac{31}{36}\right) e(49)e\left(\frac{4}{9}\right) e(56)e\left(\frac{5}{6}\right) e(2536)e\left(\frac{25}{36}\right) e(536)e\left(\frac{5}{36}\right) e(2536)e\left(\frac{25}{36}\right) e(1112)e\left(\frac{11}{12}\right) e(1318)e\left(\frac{13}{18}\right) e(712)e\left(\frac{7}{12}\right) e(712)e\left(\frac{7}{12}\right)
χ2664(1589,)\chi_{2664}(1589,\cdot) 11 11 e(2936)e\left(\frac{29}{36}\right) e(29)e\left(\frac{2}{9}\right) e(16)e\left(\frac{1}{6}\right) e(3536)e\left(\frac{35}{36}\right) e(736)e\left(\frac{7}{36}\right) e(3536)e\left(\frac{35}{36}\right) e(112)e\left(\frac{1}{12}\right) e(1118)e\left(\frac{11}{18}\right) e(512)e\left(\frac{5}{12}\right) e(512)e\left(\frac{5}{12}\right)
χ2664(1757,)\chi_{2664}(1757,\cdot) 11 11 e(736)e\left(\frac{7}{36}\right) e(79)e\left(\frac{7}{9}\right) e(56)e\left(\frac{5}{6}\right) e(136)e\left(\frac{1}{36}\right) e(2936)e\left(\frac{29}{36}\right) e(136)e\left(\frac{1}{36}\right) e(1112)e\left(\frac{11}{12}\right) e(718)e\left(\frac{7}{18}\right) e(712)e\left(\frac{7}{12}\right) e(712)e\left(\frac{7}{12}\right)
χ2664(2237,)\chi_{2664}(2237,\cdot) 11 11 e(536)e\left(\frac{5}{36}\right) e(59)e\left(\frac{5}{9}\right) e(16)e\left(\frac{1}{6}\right) e(1136)e\left(\frac{11}{36}\right) e(3136)e\left(\frac{31}{36}\right) e(1136)e\left(\frac{11}{36}\right) e(112)e\left(\frac{1}{12}\right) e(518)e\left(\frac{5}{18}\right) e(512)e\left(\frac{5}{12}\right) e(512)e\left(\frac{5}{12}\right)
χ2664(2309,)\chi_{2664}(2309,\cdot) 11 11 e(3536)e\left(\frac{35}{36}\right) e(89)e\left(\frac{8}{9}\right) e(16)e\left(\frac{1}{6}\right) e(536)e\left(\frac{5}{36}\right) e(136)e\left(\frac{1}{36}\right) e(536)e\left(\frac{5}{36}\right) e(712)e\left(\frac{7}{12}\right) e(1718)e\left(\frac{17}{18}\right) e(1112)e\left(\frac{11}{12}\right) e(1112)e\left(\frac{11}{12}\right)