Properties

Label 2664.2237
Modulus $2664$
Conductor $2664$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2664, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,18,30,7]))
 
pari: [g,chi] = znchar(Mod(2237,2664))
 

Basic properties

Modulus: \(2664\)
Conductor: \(2664\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2664.gy

\(\chi_{2664}(389,\cdot)\) \(\chi_{2664}(605,\cdot)\) \(\chi_{2664}(725,\cdot)\) \(\chi_{2664}(797,\cdot)\) \(\chi_{2664}(893,\cdot)\) \(\chi_{2664}(1253,\cdot)\) \(\chi_{2664}(1445,\cdot)\) \(\chi_{2664}(1541,\cdot)\) \(\chi_{2664}(1589,\cdot)\) \(\chi_{2664}(1757,\cdot)\) \(\chi_{2664}(2237,\cdot)\) \(\chi_{2664}(2309,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.8076586766812485233558939287824714831423086707479290364185133590224962133001181886423028704739328.1

Values on generators

\((1999,1333,2369,1297)\) → \((1,-1,e\left(\frac{5}{6}\right),e\left(\frac{7}{36}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 2664 }(2237, a) \) \(1\)\(1\)\(e\left(\frac{5}{36}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{11}{36}\right)\)\(e\left(\frac{31}{36}\right)\)\(e\left(\frac{11}{36}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2664 }(2237,a) \;\) at \(\;a = \) e.g. 2