L(s) = 1 | + (−0.120 − 0.992i)3-s + (0.822 − 0.568i)5-s + (0.663 + 0.748i)7-s + (−0.970 + 0.239i)9-s + (−0.239 + 0.970i)11-s + (−0.663 − 0.748i)15-s + (0.748 − 0.663i)17-s − i·19-s + (0.663 − 0.748i)21-s + 23-s + (0.354 − 0.935i)25-s + (0.354 + 0.935i)27-s + (−0.970 + 0.239i)29-s + (0.935 − 0.354i)31-s + (0.992 + 0.120i)33-s + ⋯ |
L(s) = 1 | + (−0.120 − 0.992i)3-s + (0.822 − 0.568i)5-s + (0.663 + 0.748i)7-s + (−0.970 + 0.239i)9-s + (−0.239 + 0.970i)11-s + (−0.663 − 0.748i)15-s + (0.748 − 0.663i)17-s − i·19-s + (0.663 − 0.748i)21-s + 23-s + (0.354 − 0.935i)25-s + (0.354 + 0.935i)27-s + (−0.970 + 0.239i)29-s + (0.935 − 0.354i)31-s + (0.992 + 0.120i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.795 - 0.605i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.795 - 0.605i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.616291762 - 0.5451690057i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.616291762 - 0.5451690057i\) |
\(L(1)\) |
\(\approx\) |
\(1.226696565 - 0.3126131164i\) |
\(L(1)\) |
\(\approx\) |
\(1.226696565 - 0.3126131164i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.120 - 0.992i)T \) |
| 5 | \( 1 + (0.822 - 0.568i)T \) |
| 7 | \( 1 + (0.663 + 0.748i)T \) |
| 11 | \( 1 + (-0.239 + 0.970i)T \) |
| 17 | \( 1 + (0.748 - 0.663i)T \) |
| 19 | \( 1 - iT \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (-0.970 + 0.239i)T \) |
| 31 | \( 1 + (0.935 - 0.354i)T \) |
| 37 | \( 1 + (0.935 - 0.354i)T \) |
| 41 | \( 1 + (0.992 - 0.120i)T \) |
| 43 | \( 1 + (-0.354 + 0.935i)T \) |
| 47 | \( 1 + (0.464 - 0.885i)T \) |
| 53 | \( 1 + (-0.748 + 0.663i)T \) |
| 59 | \( 1 + (0.822 - 0.568i)T \) |
| 61 | \( 1 + (-0.748 - 0.663i)T \) |
| 67 | \( 1 + (-0.464 + 0.885i)T \) |
| 71 | \( 1 + (-0.992 + 0.120i)T \) |
| 73 | \( 1 + (0.239 - 0.970i)T \) |
| 79 | \( 1 + (-0.885 - 0.464i)T \) |
| 83 | \( 1 + (0.992 + 0.120i)T \) |
| 89 | \( 1 + iT \) |
| 97 | \( 1 + (-0.822 - 0.568i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.68210617169910669987258459873, −21.86602949017239755742139448668, −21.18149401044510996296941399672, −20.78661328126494674699687981599, −19.626452411394944489532558632421, −18.73780781725597816960622904703, −17.6260660909348929143002043618, −17.1122799883263402679724484988, −16.3985296217354433091426413261, −15.2582009723266484892326854803, −14.59287970526393446657861792723, −13.85220868770460601868613748875, −13.09853956636449584989282150278, −11.52113644441475476685408409448, −10.91037486182208206623473841381, −10.34193461921382830551294457298, −9.41743388377875736451417987416, −8.52403237180080144195829464323, −7.444120004589159702526000852051, −6.25616029090336001200969110825, −5.471059591346238108593526435965, −4.56260262045885471280003706984, −3.46205995024953443643314705666, −2.6220974976884625447805554511, −1.068065878041914833531079692076,
1.16319993823976922929277538258, 1.97433202113738521329006400395, 2.82656673877768743079285891167, 4.64628168674026844548932025755, 5.45856697195303559261022469695, 6.123567177518857722651485417473, 7.35336651026501865341378690742, 8.054205407875339833056312783572, 9.05051581320536961588991051119, 9.829589901271978128141081445227, 11.07700081216566347852483106026, 12.05273748541790062841543218759, 12.59592535625466754780494792087, 13.37078144644380895595259449647, 14.35568445359859450543973671179, 14.94594487008193237580376672662, 16.317145997206194042811014769701, 17.1081357228439025521046255536, 17.86012030818236085526325491879, 18.41913089938345286498532325067, 19.18594670851637864306811303105, 20.522451731565164899592047411488, 20.76202331528080534194090292288, 21.832193263511939130038120718215, 22.843796817222936735399185974835