Properties

Label 1-26e2-676.395-r0-0-0
Degree 11
Conductor 676676
Sign 0.7950.605i0.795 - 0.605i
Analytic cond. 3.139333.13933
Root an. cond. 3.139333.13933
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.120 − 0.992i)3-s + (0.822 − 0.568i)5-s + (0.663 + 0.748i)7-s + (−0.970 + 0.239i)9-s + (−0.239 + 0.970i)11-s + (−0.663 − 0.748i)15-s + (0.748 − 0.663i)17-s i·19-s + (0.663 − 0.748i)21-s + 23-s + (0.354 − 0.935i)25-s + (0.354 + 0.935i)27-s + (−0.970 + 0.239i)29-s + (0.935 − 0.354i)31-s + (0.992 + 0.120i)33-s + ⋯
L(s)  = 1  + (−0.120 − 0.992i)3-s + (0.822 − 0.568i)5-s + (0.663 + 0.748i)7-s + (−0.970 + 0.239i)9-s + (−0.239 + 0.970i)11-s + (−0.663 − 0.748i)15-s + (0.748 − 0.663i)17-s i·19-s + (0.663 − 0.748i)21-s + 23-s + (0.354 − 0.935i)25-s + (0.354 + 0.935i)27-s + (−0.970 + 0.239i)29-s + (0.935 − 0.354i)31-s + (0.992 + 0.120i)33-s + ⋯

Functional equation

Λ(s)=(676s/2ΓR(s)L(s)=((0.7950.605i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.795 - 0.605i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(676s/2ΓR(s)L(s)=((0.7950.605i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.795 - 0.605i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 676676    =    221322^{2} \cdot 13^{2}
Sign: 0.7950.605i0.795 - 0.605i
Analytic conductor: 3.139333.13933
Root analytic conductor: 3.139333.13933
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ676(395,)\chi_{676} (395, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 676, (0: ), 0.7950.605i)(1,\ 676,\ (0:\ ),\ 0.795 - 0.605i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.6162917620.5451690057i1.616291762 - 0.5451690057i
L(12)L(\frac12) \approx 1.6162917620.5451690057i1.616291762 - 0.5451690057i
L(1)L(1) \approx 1.2266965650.3126131164i1.226696565 - 0.3126131164i
L(1)L(1) \approx 1.2266965650.3126131164i1.226696565 - 0.3126131164i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
13 1 1
good3 1+(0.1200.992i)T 1 + (-0.120 - 0.992i)T
5 1+(0.8220.568i)T 1 + (0.822 - 0.568i)T
7 1+(0.663+0.748i)T 1 + (0.663 + 0.748i)T
11 1+(0.239+0.970i)T 1 + (-0.239 + 0.970i)T
17 1+(0.7480.663i)T 1 + (0.748 - 0.663i)T
19 1iT 1 - iT
23 1+T 1 + T
29 1+(0.970+0.239i)T 1 + (-0.970 + 0.239i)T
31 1+(0.9350.354i)T 1 + (0.935 - 0.354i)T
37 1+(0.9350.354i)T 1 + (0.935 - 0.354i)T
41 1+(0.9920.120i)T 1 + (0.992 - 0.120i)T
43 1+(0.354+0.935i)T 1 + (-0.354 + 0.935i)T
47 1+(0.4640.885i)T 1 + (0.464 - 0.885i)T
53 1+(0.748+0.663i)T 1 + (-0.748 + 0.663i)T
59 1+(0.8220.568i)T 1 + (0.822 - 0.568i)T
61 1+(0.7480.663i)T 1 + (-0.748 - 0.663i)T
67 1+(0.464+0.885i)T 1 + (-0.464 + 0.885i)T
71 1+(0.992+0.120i)T 1 + (-0.992 + 0.120i)T
73 1+(0.2390.970i)T 1 + (0.239 - 0.970i)T
79 1+(0.8850.464i)T 1 + (-0.885 - 0.464i)T
83 1+(0.992+0.120i)T 1 + (0.992 + 0.120i)T
89 1+iT 1 + iT
97 1+(0.8220.568i)T 1 + (-0.822 - 0.568i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.68210617169910669987258459873, −21.86602949017239755742139448668, −21.18149401044510996296941399672, −20.78661328126494674699687981599, −19.626452411394944489532558632421, −18.73780781725597816960622904703, −17.6260660909348929143002043618, −17.1122799883263402679724484988, −16.3985296217354433091426413261, −15.2582009723266484892326854803, −14.59287970526393446657861792723, −13.85220868770460601868613748875, −13.09853956636449584989282150278, −11.52113644441475476685408409448, −10.91037486182208206623473841381, −10.34193461921382830551294457298, −9.41743388377875736451417987416, −8.52403237180080144195829464323, −7.444120004589159702526000852051, −6.25616029090336001200969110825, −5.471059591346238108593526435965, −4.56260262045885471280003706984, −3.46205995024953443643314705666, −2.6220974976884625447805554511, −1.068065878041914833531079692076, 1.16319993823976922929277538258, 1.97433202113738521329006400395, 2.82656673877768743079285891167, 4.64628168674026844548932025755, 5.45856697195303559261022469695, 6.123567177518857722651485417473, 7.35336651026501865341378690742, 8.054205407875339833056312783572, 9.05051581320536961588991051119, 9.829589901271978128141081445227, 11.07700081216566347852483106026, 12.05273748541790062841543218759, 12.59592535625466754780494792087, 13.37078144644380895595259449647, 14.35568445359859450543973671179, 14.94594487008193237580376672662, 16.317145997206194042811014769701, 17.1081357228439025521046255536, 17.86012030818236085526325491879, 18.41913089938345286498532325067, 19.18594670851637864306811303105, 20.522451731565164899592047411488, 20.76202331528080534194090292288, 21.832193263511939130038120718215, 22.843796817222936735399185974835

Graph of the ZZ-function along the critical line