Properties

Label 676.395
Modulus 676676
Conductor 676676
Order 5252
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(52))
 
M = H._module
 
chi = DirichletCharacter(H, M([26,11]))
 
pari: [g,chi] = znchar(Mod(395,676))
 

Basic properties

Modulus: 676676
Conductor: 676676
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 5252
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 676.s

χ676(31,)\chi_{676}(31,\cdot) χ676(47,)\chi_{676}(47,\cdot) χ676(83,)\chi_{676}(83,\cdot) χ676(135,)\chi_{676}(135,\cdot) χ676(151,)\chi_{676}(151,\cdot) χ676(187,)\chi_{676}(187,\cdot) χ676(203,)\chi_{676}(203,\cdot) χ676(255,)\chi_{676}(255,\cdot) χ676(291,)\chi_{676}(291,\cdot) χ676(307,)\chi_{676}(307,\cdot) χ676(343,)\chi_{676}(343,\cdot) χ676(359,)\chi_{676}(359,\cdot) χ676(395,)\chi_{676}(395,\cdot) χ676(411,)\chi_{676}(411,\cdot) χ676(447,)\chi_{676}(447,\cdot) χ676(463,)\chi_{676}(463,\cdot) χ676(499,)\chi_{676}(499,\cdot) χ676(515,)\chi_{676}(515,\cdot) χ676(551,)\chi_{676}(551,\cdot) χ676(567,)\chi_{676}(567,\cdot) χ676(603,)\chi_{676}(603,\cdot) χ676(619,)\chi_{676}(619,\cdot) χ676(655,)\chi_{676}(655,\cdot) χ676(671,)\chi_{676}(671,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ52)\Q(\zeta_{52})
Fixed field: Number field defined by a degree 52 polynomial

Values on generators

(339,509)(339,509)(1,e(1152))(-1,e\left(\frac{11}{52}\right))

First values

aa 1-11133557799111115151717191921212323
χ676(395,a) \chi_{ 676 }(395, a) 1111e(1926)e\left(\frac{19}{26}\right)e(4752)e\left(\frac{47}{52}\right)e(752)e\left(\frac{7}{52}\right)e(613)e\left(\frac{6}{13}\right)e(1552)e\left(\frac{15}{52}\right)e(3352)e\left(\frac{33}{52}\right)e(2326)e\left(\frac{23}{26}\right)iie(4552)e\left(\frac{45}{52}\right)11
sage: chi.jacobi_sum(n)
 
χ676(395,a)   \chi_{ 676 }(395,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ676(395,))   \tau_{ a }( \chi_{ 676 }(395,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ676(395,),χ676(n,))   J(\chi_{ 676 }(395,·),\chi_{ 676 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ676(395,))  K(a,b,\chi_{ 676 }(395,·)) \; at   a,b=\; a,b = e.g. 1,2