L(s) = 1 | + (0.411 + 0.911i)2-s + (−0.661 + 0.749i)4-s + (0.998 − 0.0498i)5-s + (−0.955 − 0.294i)8-s + (0.456 + 0.889i)10-s + (−0.0747 − 0.997i)11-s + (0.270 − 0.962i)13-s + (−0.124 − 0.992i)16-s + (0.661 + 0.749i)17-s + (−0.623 + 0.781i)20-s + (0.878 − 0.478i)22-s + (0.318 + 0.947i)23-s + (0.995 − 0.0995i)25-s + (0.988 − 0.149i)26-s + (0.853 − 0.521i)29-s + ⋯ |
L(s) = 1 | + (0.411 + 0.911i)2-s + (−0.661 + 0.749i)4-s + (0.998 − 0.0498i)5-s + (−0.955 − 0.294i)8-s + (0.456 + 0.889i)10-s + (−0.0747 − 0.997i)11-s + (0.270 − 0.962i)13-s + (−0.124 − 0.992i)16-s + (0.661 + 0.749i)17-s + (−0.623 + 0.781i)20-s + (0.878 − 0.478i)22-s + (0.318 + 0.947i)23-s + (0.995 − 0.0995i)25-s + (0.988 − 0.149i)26-s + (0.853 − 0.521i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.948 + 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.948 + 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.311793504 + 0.5380728097i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.311793504 + 0.5380728097i\) |
\(L(1)\) |
\(\approx\) |
\(1.418573130 + 0.5431431342i\) |
\(L(1)\) |
\(\approx\) |
\(1.418573130 + 0.5431431342i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.411 + 0.911i)T \) |
| 5 | \( 1 + (0.998 - 0.0498i)T \) |
| 11 | \( 1 + (-0.0747 - 0.997i)T \) |
| 13 | \( 1 + (0.270 - 0.962i)T \) |
| 17 | \( 1 + (0.661 + 0.749i)T \) |
| 23 | \( 1 + (0.318 + 0.947i)T \) |
| 29 | \( 1 + (0.853 - 0.521i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (-0.988 - 0.149i)T \) |
| 41 | \( 1 + (0.998 - 0.0498i)T \) |
| 43 | \( 1 + (-0.797 + 0.603i)T \) |
| 47 | \( 1 + (-0.270 + 0.962i)T \) |
| 53 | \( 1 + (0.661 - 0.749i)T \) |
| 59 | \( 1 + (-0.921 - 0.388i)T \) |
| 61 | \( 1 + (-0.853 + 0.521i)T \) |
| 67 | \( 1 + (0.766 - 0.642i)T \) |
| 71 | \( 1 + (0.0249 - 0.999i)T \) |
| 73 | \( 1 + (-0.969 - 0.246i)T \) |
| 79 | \( 1 + (-0.939 + 0.342i)T \) |
| 83 | \( 1 + (-0.826 - 0.563i)T \) |
| 89 | \( 1 + (0.411 - 0.911i)T \) |
| 97 | \( 1 + (-0.939 + 0.342i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.83207603879305656981965619392, −18.54112102045395212504896361118, −17.73689987443436520566094063363, −17.11197711347534553244762357605, −16.22217404996306380341414052030, −15.252201126419873954293509266222, −14.45425959127976979257583012786, −13.96109517647202323273863620694, −13.39475677100926585488432302229, −12.44674614884793351752319103444, −12.077833057092013788820209108203, −11.1503175233170804926283565667, −10.24820355240728339899251997987, −9.942275590390756558465542084198, −9.09744526169621211817062941519, −8.512519491447206296390868444015, −7.08702534573933742306048995806, −6.51324809991859839471494274257, −5.57279451803209872416763043745, −4.8421036525236903701203243721, −4.266273588384164305251338495217, −3.08258575723678992834273182095, −2.43002796628505523588601218130, −1.64684808685285773711582341463, −0.88392915645759436412436188733,
0.52991904228297840670164164513, 1.486759454636116269993019372040, 2.925859499826986324545367124308, 3.29830848055294997818658273177, 4.47669841255995585961386493731, 5.330506084238398842810968151966, 5.94251860145764805147100576988, 6.331420232053596785745253844935, 7.43194275598035907952327321457, 8.21287672332516815587582501991, 8.72718732408769869634130079500, 9.6745653732693572427635396267, 10.311535204860317483700761207365, 11.23260521074238909675725135698, 12.263046880749544691333272189805, 12.92782427859681822825990125500, 13.59317607789817242102055457349, 14.024765212345246369735648751200, 14.836298759448883048863447084, 15.578402150643323359789168704243, 16.21477996320251364919859589021, 17.04309893062589020583547263980, 17.48574494163093723002454133236, 18.101864711364614307049291486111, 18.92494792366274226765302543536