Properties

Label 1-2793-2793.1871-r1-0-0
Degree 11
Conductor 27932793
Sign 0.948+0.316i0.948 + 0.316i
Analytic cond. 300.149300.149
Root an. cond. 300.149300.149
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.411 + 0.911i)2-s + (−0.661 + 0.749i)4-s + (0.998 − 0.0498i)5-s + (−0.955 − 0.294i)8-s + (0.456 + 0.889i)10-s + (−0.0747 − 0.997i)11-s + (0.270 − 0.962i)13-s + (−0.124 − 0.992i)16-s + (0.661 + 0.749i)17-s + (−0.623 + 0.781i)20-s + (0.878 − 0.478i)22-s + (0.318 + 0.947i)23-s + (0.995 − 0.0995i)25-s + (0.988 − 0.149i)26-s + (0.853 − 0.521i)29-s + ⋯
L(s)  = 1  + (0.411 + 0.911i)2-s + (−0.661 + 0.749i)4-s + (0.998 − 0.0498i)5-s + (−0.955 − 0.294i)8-s + (0.456 + 0.889i)10-s + (−0.0747 − 0.997i)11-s + (0.270 − 0.962i)13-s + (−0.124 − 0.992i)16-s + (0.661 + 0.749i)17-s + (−0.623 + 0.781i)20-s + (0.878 − 0.478i)22-s + (0.318 + 0.947i)23-s + (0.995 − 0.0995i)25-s + (0.988 − 0.149i)26-s + (0.853 − 0.521i)29-s + ⋯

Functional equation

Λ(s)=(2793s/2ΓR(s+1)L(s)=((0.948+0.316i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.948 + 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(2793s/2ΓR(s+1)L(s)=((0.948+0.316i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.948 + 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 27932793    =    372193 \cdot 7^{2} \cdot 19
Sign: 0.948+0.316i0.948 + 0.316i
Analytic conductor: 300.149300.149
Root analytic conductor: 300.149300.149
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ2793(1871,)\chi_{2793} (1871, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 2793, (1: ), 0.948+0.316i)(1,\ 2793,\ (1:\ ),\ 0.948 + 0.316i)

Particular Values

L(12)L(\frac{1}{2}) \approx 3.311793504+0.5380728097i3.311793504 + 0.5380728097i
L(12)L(\frac12) \approx 3.311793504+0.5380728097i3.311793504 + 0.5380728097i
L(1)L(1) \approx 1.418573130+0.5431431342i1.418573130 + 0.5431431342i
L(1)L(1) \approx 1.418573130+0.5431431342i1.418573130 + 0.5431431342i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
19 1 1
good2 1+(0.411+0.911i)T 1 + (0.411 + 0.911i)T
5 1+(0.9980.0498i)T 1 + (0.998 - 0.0498i)T
11 1+(0.07470.997i)T 1 + (-0.0747 - 0.997i)T
13 1+(0.2700.962i)T 1 + (0.270 - 0.962i)T
17 1+(0.661+0.749i)T 1 + (0.661 + 0.749i)T
23 1+(0.318+0.947i)T 1 + (0.318 + 0.947i)T
29 1+(0.8530.521i)T 1 + (0.853 - 0.521i)T
31 1+T 1 + T
37 1+(0.9880.149i)T 1 + (-0.988 - 0.149i)T
41 1+(0.9980.0498i)T 1 + (0.998 - 0.0498i)T
43 1+(0.797+0.603i)T 1 + (-0.797 + 0.603i)T
47 1+(0.270+0.962i)T 1 + (-0.270 + 0.962i)T
53 1+(0.6610.749i)T 1 + (0.661 - 0.749i)T
59 1+(0.9210.388i)T 1 + (-0.921 - 0.388i)T
61 1+(0.853+0.521i)T 1 + (-0.853 + 0.521i)T
67 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
71 1+(0.02490.999i)T 1 + (0.0249 - 0.999i)T
73 1+(0.9690.246i)T 1 + (-0.969 - 0.246i)T
79 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
83 1+(0.8260.563i)T 1 + (-0.826 - 0.563i)T
89 1+(0.4110.911i)T 1 + (0.411 - 0.911i)T
97 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.83207603879305656981965619392, −18.54112102045395212504896361118, −17.73689987443436520566094063363, −17.11197711347534553244762357605, −16.22217404996306380341414052030, −15.252201126419873954293509266222, −14.45425959127976979257583012786, −13.96109517647202323273863620694, −13.39475677100926585488432302229, −12.44674614884793351752319103444, −12.077833057092013788820209108203, −11.1503175233170804926283565667, −10.24820355240728339899251997987, −9.942275590390756558465542084198, −9.09744526169621211817062941519, −8.512519491447206296390868444015, −7.08702534573933742306048995806, −6.51324809991859839471494274257, −5.57279451803209872416763043745, −4.8421036525236903701203243721, −4.266273588384164305251338495217, −3.08258575723678992834273182095, −2.43002796628505523588601218130, −1.64684808685285773711582341463, −0.88392915645759436412436188733, 0.52991904228297840670164164513, 1.486759454636116269993019372040, 2.925859499826986324545367124308, 3.29830848055294997818658273177, 4.47669841255995585961386493731, 5.330506084238398842810968151966, 5.94251860145764805147100576988, 6.331420232053596785745253844935, 7.43194275598035907952327321457, 8.21287672332516815587582501991, 8.72718732408769869634130079500, 9.6745653732693572427635396267, 10.311535204860317483700761207365, 11.23260521074238909675725135698, 12.263046880749544691333272189805, 12.92782427859681822825990125500, 13.59317607789817242102055457349, 14.024765212345246369735648751200, 14.836298759448883048863447084, 15.578402150643323359789168704243, 16.21477996320251364919859589021, 17.04309893062589020583547263980, 17.48574494163093723002454133236, 18.101864711364614307049291486111, 18.92494792366274226765302543536

Graph of the ZZ-function along the critical line