L(s) = 1 | + (0.411 + 0.911i)2-s + (−0.661 + 0.749i)4-s + (0.998 − 0.0498i)5-s + (−0.955 − 0.294i)8-s + (0.456 + 0.889i)10-s + (−0.0747 − 0.997i)11-s + (0.270 − 0.962i)13-s + (−0.124 − 0.992i)16-s + (0.661 + 0.749i)17-s + (−0.623 + 0.781i)20-s + (0.878 − 0.478i)22-s + (0.318 + 0.947i)23-s + (0.995 − 0.0995i)25-s + (0.988 − 0.149i)26-s + (0.853 − 0.521i)29-s + ⋯ |
L(s) = 1 | + (0.411 + 0.911i)2-s + (−0.661 + 0.749i)4-s + (0.998 − 0.0498i)5-s + (−0.955 − 0.294i)8-s + (0.456 + 0.889i)10-s + (−0.0747 − 0.997i)11-s + (0.270 − 0.962i)13-s + (−0.124 − 0.992i)16-s + (0.661 + 0.749i)17-s + (−0.623 + 0.781i)20-s + (0.878 − 0.478i)22-s + (0.318 + 0.947i)23-s + (0.995 − 0.0995i)25-s + (0.988 − 0.149i)26-s + (0.853 − 0.521i)29-s + ⋯ |
Λ(s)=(=(2793s/2ΓR(s+1)L(s)(0.948+0.316i)Λ(1−s)
Λ(s)=(=(2793s/2ΓR(s+1)L(s)(0.948+0.316i)Λ(1−s)
Degree: |
1 |
Conductor: |
2793
= 3⋅72⋅19
|
Sign: |
0.948+0.316i
|
Analytic conductor: |
300.149 |
Root analytic conductor: |
300.149 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2793(1871,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2793, (1: ), 0.948+0.316i)
|
Particular Values
L(21) |
≈ |
3.311793504+0.5380728097i |
L(21) |
≈ |
3.311793504+0.5380728097i |
L(1) |
≈ |
1.418573130+0.5431431342i |
L(1) |
≈ |
1.418573130+0.5431431342i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 19 | 1 |
good | 2 | 1+(0.411+0.911i)T |
| 5 | 1+(0.998−0.0498i)T |
| 11 | 1+(−0.0747−0.997i)T |
| 13 | 1+(0.270−0.962i)T |
| 17 | 1+(0.661+0.749i)T |
| 23 | 1+(0.318+0.947i)T |
| 29 | 1+(0.853−0.521i)T |
| 31 | 1+T |
| 37 | 1+(−0.988−0.149i)T |
| 41 | 1+(0.998−0.0498i)T |
| 43 | 1+(−0.797+0.603i)T |
| 47 | 1+(−0.270+0.962i)T |
| 53 | 1+(0.661−0.749i)T |
| 59 | 1+(−0.921−0.388i)T |
| 61 | 1+(−0.853+0.521i)T |
| 67 | 1+(0.766−0.642i)T |
| 71 | 1+(0.0249−0.999i)T |
| 73 | 1+(−0.969−0.246i)T |
| 79 | 1+(−0.939+0.342i)T |
| 83 | 1+(−0.826−0.563i)T |
| 89 | 1+(0.411−0.911i)T |
| 97 | 1+(−0.939+0.342i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.83207603879305656981965619392, −18.54112102045395212504896361118, −17.73689987443436520566094063363, −17.11197711347534553244762357605, −16.22217404996306380341414052030, −15.252201126419873954293509266222, −14.45425959127976979257583012786, −13.96109517647202323273863620694, −13.39475677100926585488432302229, −12.44674614884793351752319103444, −12.077833057092013788820209108203, −11.1503175233170804926283565667, −10.24820355240728339899251997987, −9.942275590390756558465542084198, −9.09744526169621211817062941519, −8.512519491447206296390868444015, −7.08702534573933742306048995806, −6.51324809991859839471494274257, −5.57279451803209872416763043745, −4.8421036525236903701203243721, −4.266273588384164305251338495217, −3.08258575723678992834273182095, −2.43002796628505523588601218130, −1.64684808685285773711582341463, −0.88392915645759436412436188733,
0.52991904228297840670164164513, 1.486759454636116269993019372040, 2.925859499826986324545367124308, 3.29830848055294997818658273177, 4.47669841255995585961386493731, 5.330506084238398842810968151966, 5.94251860145764805147100576988, 6.331420232053596785745253844935, 7.43194275598035907952327321457, 8.21287672332516815587582501991, 8.72718732408769869634130079500, 9.6745653732693572427635396267, 10.311535204860317483700761207365, 11.23260521074238909675725135698, 12.263046880749544691333272189805, 12.92782427859681822825990125500, 13.59317607789817242102055457349, 14.024765212345246369735648751200, 14.836298759448883048863447084, 15.578402150643323359789168704243, 16.21477996320251364919859589021, 17.04309893062589020583547263980, 17.48574494163093723002454133236, 18.101864711364614307049291486111, 18.92494792366274226765302543536