Properties

Label 2793.1871
Modulus 27932793
Conductor 27932793
Order 126126
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([63,6,56]))
 
pari: [g,chi] = znchar(Mod(1871,2793))
 

Basic properties

Modulus: 27932793
Conductor: 27932793
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 126126
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2793.ei

χ2793(23,)\chi_{2793}(23,\cdot) χ2793(44,)\chi_{2793}(44,\cdot) χ2793(74,)\chi_{2793}(74,\cdot) χ2793(347,)\chi_{2793}(347,\cdot) χ2793(443,)\chi_{2793}(443,\cdot) χ2793(473,)\chi_{2793}(473,\cdot) χ2793(662,)\chi_{2793}(662,\cdot) χ2793(674,)\chi_{2793}(674,\cdot) χ2793(746,)\chi_{2793}(746,\cdot) χ2793(821,)\chi_{2793}(821,\cdot) χ2793(842,)\chi_{2793}(842,\cdot) χ2793(872,)\chi_{2793}(872,\cdot) χ2793(1061,)\chi_{2793}(1061,\cdot) χ2793(1073,)\chi_{2793}(1073,\cdot) χ2793(1220,)\chi_{2793}(1220,\cdot) χ2793(1241,)\chi_{2793}(1241,\cdot) χ2793(1271,)\chi_{2793}(1271,\cdot) χ2793(1460,)\chi_{2793}(1460,\cdot) χ2793(1472,)\chi_{2793}(1472,\cdot) χ2793(1544,)\chi_{2793}(1544,\cdot) χ2793(1619,)\chi_{2793}(1619,\cdot) χ2793(1640,)\chi_{2793}(1640,\cdot) χ2793(1670,)\chi_{2793}(1670,\cdot) χ2793(1859,)\chi_{2793}(1859,\cdot) χ2793(1871,)\chi_{2793}(1871,\cdot) χ2793(1943,)\chi_{2793}(1943,\cdot) χ2793(2018,)\chi_{2793}(2018,\cdot) χ2793(2069,)\chi_{2793}(2069,\cdot) χ2793(2258,)\chi_{2793}(2258,\cdot) χ2793(2270,)\chi_{2793}(2270,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ63)\Q(\zeta_{63})
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

(932,2110,2206)(932,2110,2206)(1,e(121),e(49))(-1,e\left(\frac{1}{21}\right),e\left(\frac{4}{9}\right))

First values

aa 1-11122445588101011111313161617172020
χ2793(1871,a) \chi_{ 2793 }(1871, a) 1-111e(23126)e\left(\frac{23}{126}\right)e(2363)e\left(\frac{23}{63}\right)e(125126)e\left(\frac{125}{126}\right)e(2342)e\left(\frac{23}{42}\right)e(1163)e\left(\frac{11}{63}\right)e(3142)e\left(\frac{31}{42}\right)e(5063)e\left(\frac{50}{63}\right)e(4663)e\left(\frac{46}{63}\right)e(17126)e\left(\frac{17}{126}\right)e(514)e\left(\frac{5}{14}\right)
sage: chi.jacobi_sum(n)
 
χ2793(1871,a)   \chi_{ 2793 }(1871,a) \; at   a=\;a = e.g. 2