from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,6,56]))
pari: [g,chi] = znchar(Mod(1871,2793))
χ2793(23,⋅)
χ2793(44,⋅)
χ2793(74,⋅)
χ2793(347,⋅)
χ2793(443,⋅)
χ2793(473,⋅)
χ2793(662,⋅)
χ2793(674,⋅)
χ2793(746,⋅)
χ2793(821,⋅)
χ2793(842,⋅)
χ2793(872,⋅)
χ2793(1061,⋅)
χ2793(1073,⋅)
χ2793(1220,⋅)
χ2793(1241,⋅)
χ2793(1271,⋅)
χ2793(1460,⋅)
χ2793(1472,⋅)
χ2793(1544,⋅)
χ2793(1619,⋅)
χ2793(1640,⋅)
χ2793(1670,⋅)
χ2793(1859,⋅)
χ2793(1871,⋅)
χ2793(1943,⋅)
χ2793(2018,⋅)
χ2793(2069,⋅)
χ2793(2258,⋅)
χ2793(2270,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(932,2110,2206) → (−1,e(211),e(94))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 20 |
χ2793(1871,a) |
−1 | 1 | e(12623) | e(6323) | e(126125) | e(4223) | e(6311) | e(4231) | e(6350) | e(6346) | e(12617) | e(145) |