Properties

Label 1-2793-2793.2081-r0-0-0
Degree 11
Conductor 27932793
Sign 0.4250.904i-0.425 - 0.904i
Analytic cond. 12.970612.9706
Root an. cond. 12.970612.9706
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.980 − 0.198i)2-s + (0.921 − 0.388i)4-s + (0.583 − 0.811i)5-s + (0.826 − 0.563i)8-s + (0.411 − 0.911i)10-s + (0.988 + 0.149i)11-s + (−0.878 − 0.478i)13-s + (0.698 − 0.715i)16-s + (−0.921 − 0.388i)17-s + (0.222 − 0.974i)20-s + (0.998 − 0.0498i)22-s + (0.124 − 0.992i)23-s + (−0.318 − 0.947i)25-s + (−0.955 − 0.294i)26-s + (0.542 − 0.840i)29-s + ⋯
L(s)  = 1  + (0.980 − 0.198i)2-s + (0.921 − 0.388i)4-s + (0.583 − 0.811i)5-s + (0.826 − 0.563i)8-s + (0.411 − 0.911i)10-s + (0.988 + 0.149i)11-s + (−0.878 − 0.478i)13-s + (0.698 − 0.715i)16-s + (−0.921 − 0.388i)17-s + (0.222 − 0.974i)20-s + (0.998 − 0.0498i)22-s + (0.124 − 0.992i)23-s + (−0.318 − 0.947i)25-s + (−0.955 − 0.294i)26-s + (0.542 − 0.840i)29-s + ⋯

Functional equation

Λ(s)=(2793s/2ΓR(s)L(s)=((0.4250.904i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.425 - 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(2793s/2ΓR(s)L(s)=((0.4250.904i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.425 - 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 27932793    =    372193 \cdot 7^{2} \cdot 19
Sign: 0.4250.904i-0.425 - 0.904i
Analytic conductor: 12.970612.9706
Root analytic conductor: 12.970612.9706
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ2793(2081,)\chi_{2793} (2081, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 2793, (0: ), 0.4250.904i)(1,\ 2793,\ (0:\ ),\ -0.425 - 0.904i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.8358925672.893083407i1.835892567 - 2.893083407i
L(12)L(\frac12) \approx 1.8358925672.893083407i1.835892567 - 2.893083407i
L(1)L(1) \approx 1.8571341780.9133383995i1.857134178 - 0.9133383995i
L(1)L(1) \approx 1.8571341780.9133383995i1.857134178 - 0.9133383995i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
19 1 1
good2 1+(0.9800.198i)T 1 + (0.980 - 0.198i)T
5 1+(0.5830.811i)T 1 + (0.583 - 0.811i)T
11 1+(0.988+0.149i)T 1 + (0.988 + 0.149i)T
13 1+(0.8780.478i)T 1 + (-0.878 - 0.478i)T
17 1+(0.9210.388i)T 1 + (-0.921 - 0.388i)T
23 1+(0.1240.992i)T 1 + (0.124 - 0.992i)T
29 1+(0.5420.840i)T 1 + (0.542 - 0.840i)T
31 1T 1 - T
37 1+(0.955+0.294i)T 1 + (-0.955 + 0.294i)T
41 1+(0.583+0.811i)T 1 + (-0.583 + 0.811i)T
43 1+(0.9690.246i)T 1 + (-0.969 - 0.246i)T
47 1+(0.8780.478i)T 1 + (-0.878 - 0.478i)T
53 1+(0.9210.388i)T 1 + (0.921 - 0.388i)T
59 1+(0.270+0.962i)T 1 + (0.270 + 0.962i)T
61 1+(0.5420.840i)T 1 + (0.542 - 0.840i)T
67 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
71 1+(0.4560.889i)T 1 + (0.456 - 0.889i)T
73 1+(0.0249+0.999i)T 1 + (-0.0249 + 0.999i)T
79 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
83 1+(0.365+0.930i)T 1 + (-0.365 + 0.930i)T
89 1+(0.980+0.198i)T 1 + (0.980 + 0.198i)T
97 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−19.63561364580688756869195448019, −18.89070821889699879886683481793, −17.76361271798172106006991322280, −17.31996445183525166322355228734, −16.59604700353587963966930479316, −15.77046469266368128674464718445, −14.86754336318289520149688283806, −14.59523383852351029886646133060, −13.80972564544417913239675731463, −13.28994488455199719832559926999, −12.3521262277883137752645126919, −11.68376756915529601213248223953, −11.02517601284157128833899923198, −10.3145686253933571398755240571, −9.39979618321588026705449922732, −8.62027914812998411350164738207, −7.38705296537989676776452802935, −6.90218341839464790243147455512, −6.34332633468831410344522925425, −5.473150120983403706556959001613, −4.74778828127495643855423412136, −3.73816532093405150005879676270, −3.211121958543969092911697002983, −2.09993487730434020859528594590, −1.65234557725429515011076608076, 0.65476687516510098820056677481, 1.769744832825668068008648823394, 2.3497656634548874144698076864, 3.378825322238102414559522623624, 4.36186702266025603360104324358, 4.871308174308353073244162029185, 5.57310991348800448449884504472, 6.53574877666167801025346271399, 6.95648859051644941487978373503, 8.14264656306366889550322166401, 8.95121322690256904812870636957, 9.82617812107376227968891217919, 10.340814735276561886406774856545, 11.43302725154337797761103827610, 12.00648259294101747029935012758, 12.64538681267623952041014667881, 13.32412595274793556875805888941, 13.90179040933545936510984199789, 14.73853866887183078539914288390, 15.21658726200295318435512703982, 16.23341247759763672290249767458, 16.74773175624691958066656346775, 17.42155984114205248828978406538, 18.23763249836792455525994757432, 19.35185590110061592924151528327

Graph of the ZZ-function along the critical line