Properties

Label 2793.2081
Modulus $2793$
Conductor $2793$
Order $126$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([63,114,119]))
 
pari: [g,chi] = znchar(Mod(2081,2793))
 

Basic properties

Modulus: \(2793\)
Conductor: \(2793\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(126\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2793.es

\(\chi_{2793}(86,\cdot)\) \(\chi_{2793}(242,\cdot)\) \(\chi_{2793}(317,\cdot)\) \(\chi_{2793}(326,\cdot)\) \(\chi_{2793}(338,\cdot)\) \(\chi_{2793}(485,\cdot)\) \(\chi_{2793}(515,\cdot)\) \(\chi_{2793}(641,\cdot)\) \(\chi_{2793}(725,\cdot)\) \(\chi_{2793}(737,\cdot)\) \(\chi_{2793}(884,\cdot)\) \(\chi_{2793}(914,\cdot)\) \(\chi_{2793}(1040,\cdot)\) \(\chi_{2793}(1115,\cdot)\) \(\chi_{2793}(1124,\cdot)\) \(\chi_{2793}(1136,\cdot)\) \(\chi_{2793}(1283,\cdot)\) \(\chi_{2793}(1313,\cdot)\) \(\chi_{2793}(1514,\cdot)\) \(\chi_{2793}(1523,\cdot)\) \(\chi_{2793}(1535,\cdot)\) \(\chi_{2793}(1682,\cdot)\) \(\chi_{2793}(1712,\cdot)\) \(\chi_{2793}(1838,\cdot)\) \(\chi_{2793}(1913,\cdot)\) \(\chi_{2793}(1922,\cdot)\) \(\chi_{2793}(1934,\cdot)\) \(\chi_{2793}(2081,\cdot)\) \(\chi_{2793}(2111,\cdot)\) \(\chi_{2793}(2237,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((932,2110,2206)\) → \((-1,e\left(\frac{19}{21}\right),e\left(\frac{17}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(20\)
\( \chi_{ 2793 }(2081, a) \) \(1\)\(1\)\(e\left(\frac{61}{63}\right)\)\(e\left(\frac{59}{63}\right)\)\(e\left(\frac{107}{126}\right)\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{103}{126}\right)\)\(e\left(\frac{1}{42}\right)\)\(e\left(\frac{73}{126}\right)\)\(e\left(\frac{55}{63}\right)\)\(e\left(\frac{71}{126}\right)\)\(e\left(\frac{11}{14}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2793 }(2081,a) \;\) at \(\;a = \) e.g. 2