Properties

Label 2793.2081
Modulus 27932793
Conductor 27932793
Order 126126
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([63,114,119]))
 
pari: [g,chi] = znchar(Mod(2081,2793))
 

Basic properties

Modulus: 27932793
Conductor: 27932793
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 126126
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2793.es

χ2793(86,)\chi_{2793}(86,\cdot) χ2793(242,)\chi_{2793}(242,\cdot) χ2793(317,)\chi_{2793}(317,\cdot) χ2793(326,)\chi_{2793}(326,\cdot) χ2793(338,)\chi_{2793}(338,\cdot) χ2793(485,)\chi_{2793}(485,\cdot) χ2793(515,)\chi_{2793}(515,\cdot) χ2793(641,)\chi_{2793}(641,\cdot) χ2793(725,)\chi_{2793}(725,\cdot) χ2793(737,)\chi_{2793}(737,\cdot) χ2793(884,)\chi_{2793}(884,\cdot) χ2793(914,)\chi_{2793}(914,\cdot) χ2793(1040,)\chi_{2793}(1040,\cdot) χ2793(1115,)\chi_{2793}(1115,\cdot) χ2793(1124,)\chi_{2793}(1124,\cdot) χ2793(1136,)\chi_{2793}(1136,\cdot) χ2793(1283,)\chi_{2793}(1283,\cdot) χ2793(1313,)\chi_{2793}(1313,\cdot) χ2793(1514,)\chi_{2793}(1514,\cdot) χ2793(1523,)\chi_{2793}(1523,\cdot) χ2793(1535,)\chi_{2793}(1535,\cdot) χ2793(1682,)\chi_{2793}(1682,\cdot) χ2793(1712,)\chi_{2793}(1712,\cdot) χ2793(1838,)\chi_{2793}(1838,\cdot) χ2793(1913,)\chi_{2793}(1913,\cdot) χ2793(1922,)\chi_{2793}(1922,\cdot) χ2793(1934,)\chi_{2793}(1934,\cdot) χ2793(2081,)\chi_{2793}(2081,\cdot) χ2793(2111,)\chi_{2793}(2111,\cdot) χ2793(2237,)\chi_{2793}(2237,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ63)\Q(\zeta_{63})
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

(932,2110,2206)(932,2110,2206)(1,e(1921),e(1718))(-1,e\left(\frac{19}{21}\right),e\left(\frac{17}{18}\right))

First values

aa 1-11122445588101011111313161617172020
χ2793(2081,a) \chi_{ 2793 }(2081, a) 1111e(6163)e\left(\frac{61}{63}\right)e(5963)e\left(\frac{59}{63}\right)e(107126)e\left(\frac{107}{126}\right)e(1921)e\left(\frac{19}{21}\right)e(103126)e\left(\frac{103}{126}\right)e(142)e\left(\frac{1}{42}\right)e(73126)e\left(\frac{73}{126}\right)e(5563)e\left(\frac{55}{63}\right)e(71126)e\left(\frac{71}{126}\right)e(1114)e\left(\frac{11}{14}\right)
sage: chi.jacobi_sum(n)
 
χ2793(2081,a)   \chi_{ 2793 }(2081,a) \; at   a=\;a = e.g. 2