from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,78,77]))
pari: [g,chi] = znchar(Mod(737,2793))
χ2793(86,⋅)
χ2793(242,⋅)
χ2793(317,⋅)
χ2793(326,⋅)
χ2793(338,⋅)
χ2793(485,⋅)
χ2793(515,⋅)
χ2793(641,⋅)
χ2793(725,⋅)
χ2793(737,⋅)
χ2793(884,⋅)
χ2793(914,⋅)
χ2793(1040,⋅)
χ2793(1115,⋅)
χ2793(1124,⋅)
χ2793(1136,⋅)
χ2793(1283,⋅)
χ2793(1313,⋅)
χ2793(1514,⋅)
χ2793(1523,⋅)
χ2793(1535,⋅)
χ2793(1682,⋅)
χ2793(1712,⋅)
χ2793(1838,⋅)
χ2793(1913,⋅)
χ2793(1922,⋅)
χ2793(1934,⋅)
χ2793(2081,⋅)
χ2793(2111,⋅)
χ2793(2237,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(932,2110,2206) → (−1,e(2113),e(1811))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 20 |
χ2793(737,a) |
1 | 1 | e(6313) | e(6326) | e(12629) | e(2113) | e(12655) | e(4225) | e(12661) | e(6352) | e(12611) | e(149) |