from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,12,91]))
pari: [g,chi] = znchar(Mod(326,2793))
χ2793(86,⋅)
χ2793(242,⋅)
χ2793(317,⋅)
χ2793(326,⋅)
χ2793(338,⋅)
χ2793(485,⋅)
χ2793(515,⋅)
χ2793(641,⋅)
χ2793(725,⋅)
χ2793(737,⋅)
χ2793(884,⋅)
χ2793(914,⋅)
χ2793(1040,⋅)
χ2793(1115,⋅)
χ2793(1124,⋅)
χ2793(1136,⋅)
χ2793(1283,⋅)
χ2793(1313,⋅)
χ2793(1514,⋅)
χ2793(1523,⋅)
χ2793(1535,⋅)
χ2793(1682,⋅)
χ2793(1712,⋅)
χ2793(1838,⋅)
χ2793(1913,⋅)
χ2793(1922,⋅)
χ2793(1934,⋅)
χ2793(2081,⋅)
χ2793(2111,⋅)
χ2793(2237,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(932,2110,2206) → (−1,e(212),e(1813))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 20 |
χ2793(326,a) |
1 | 1 | e(6344) | e(6325) | e(126103) | e(212) | e(12665) | e(4241) | e(12695) | e(6350) | e(12613) | e(143) |