L(s) = 1 | + (0.698 + 0.715i)2-s + (−0.0249 + 0.999i)4-s + (−0.797 − 0.603i)5-s + (−0.733 + 0.680i)8-s + (−0.124 − 0.992i)10-s + (−0.826 + 0.563i)11-s + (−0.411 − 0.911i)13-s + (−0.998 − 0.0498i)16-s + (−0.0249 − 0.999i)17-s + (0.623 − 0.781i)20-s + (−0.980 − 0.198i)22-s + (−0.878 + 0.478i)23-s + (0.270 + 0.962i)25-s + (0.365 − 0.930i)26-s + (−0.661 − 0.749i)29-s + ⋯ |
L(s) = 1 | + (0.698 + 0.715i)2-s + (−0.0249 + 0.999i)4-s + (−0.797 − 0.603i)5-s + (−0.733 + 0.680i)8-s + (−0.124 − 0.992i)10-s + (−0.826 + 0.563i)11-s + (−0.411 − 0.911i)13-s + (−0.998 − 0.0498i)16-s + (−0.0249 − 0.999i)17-s + (0.623 − 0.781i)20-s + (−0.980 − 0.198i)22-s + (−0.878 + 0.478i)23-s + (0.270 + 0.962i)25-s + (0.365 − 0.930i)26-s + (−0.661 − 0.749i)29-s + ⋯ |
Λ(s)=(=(2793s/2ΓR(s+1)L(s)(−0.609+0.792i)Λ(1−s)
Λ(s)=(=(2793s/2ΓR(s+1)L(s)(−0.609+0.792i)Λ(1−s)
Degree: |
1 |
Conductor: |
2793
= 3⋅72⋅19
|
Sign: |
−0.609+0.792i
|
Analytic conductor: |
300.149 |
Root analytic conductor: |
300.149 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2793(269,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2793, (1: ), −0.609+0.792i)
|
Particular Values
L(21) |
≈ |
0.3919027174+0.7962483159i |
L(21) |
≈ |
0.3919027174+0.7962483159i |
L(1) |
≈ |
0.9576715986+0.3118074580i |
L(1) |
≈ |
0.9576715986+0.3118074580i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 19 | 1 |
good | 2 | 1+(0.698+0.715i)T |
| 5 | 1+(−0.797−0.603i)T |
| 11 | 1+(−0.826+0.563i)T |
| 13 | 1+(−0.411−0.911i)T |
| 17 | 1+(−0.0249−0.999i)T |
| 23 | 1+(−0.878+0.478i)T |
| 29 | 1+(−0.661−0.749i)T |
| 31 | 1+T |
| 37 | 1+(−0.365−0.930i)T |
| 41 | 1+(0.797+0.603i)T |
| 43 | 1+(0.542−0.840i)T |
| 47 | 1+(−0.411−0.911i)T |
| 53 | 1+(−0.0249+0.999i)T |
| 59 | 1+(−0.456−0.889i)T |
| 61 | 1+(0.661+0.749i)T |
| 67 | 1+(0.939−0.342i)T |
| 71 | 1+(−0.318−0.947i)T |
| 73 | 1+(−0.995+0.0995i)T |
| 79 | 1+(−0.173−0.984i)T |
| 83 | 1+(0.0747−0.997i)T |
| 89 | 1+(−0.698+0.715i)T |
| 97 | 1+(0.173+0.984i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.04334825371103919327224726130, −18.421972441958739247062197679185, −17.57945725545567921955685334088, −16.40778088895435493251641516513, −15.8375089546724964441505955777, −15.13414594745393559568036865639, −14.38233749037953151286970939921, −13.97674064639882519262806574444, −12.93558205927328434583331888337, −12.4219136117648127539351889413, −11.57507959020928167946578238452, −11.08767262956295828189975652682, −10.38204772566571404855082041529, −9.74839632245282815366247599396, −8.63382884556948299148933394779, −7.95209470843418096186334784273, −6.92627213199225228599724701766, −6.28089039398505633929893536671, −5.44232888630684737970443758870, −4.43898913370884923520612525814, −3.95402248564641739972120771566, −3.02618986984849759116615168178, −2.40968794099538150119575595182, −1.38721756787496317837220556683, −0.17688313209830646630163667393,
0.56422197647986622662392205030, 2.17324331261570390266725947556, 2.98423282706431328115280001835, 3.88128186142572547187000898771, 4.623311244549181967645744626179, 5.25629775443684493469813940376, 5.89790226174787953360642680899, 7.09219222731913348706244536840, 7.67816902589039751436990238196, 8.05317887594199829599192692562, 9.032008167891345226614905420563, 9.83776479792218341140472253882, 10.86949971130740828400782282765, 11.83600891171992271420880058297, 12.21007838164787319043948264465, 13.023760564326874785147392882358, 13.51658720911325318104286651501, 14.4606019922036710017769611144, 15.24204792931347526000369492987, 15.74325282022839505086827983697, 16.15744724266755292766525347165, 17.12152990326139163778625638664, 17.687258866877863705193104133739, 18.40413226795666300020613031101, 19.396814171505561749214917940029