from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,111,91]))
pari: [g,chi] = znchar(Mod(269,2793))
χ2793(59,⋅)
χ2793(89,⋅)
χ2793(110,⋅)
χ2793(185,⋅)
χ2793(257,⋅)
χ2793(269,⋅)
χ2793(458,⋅)
χ2793(488,⋅)
χ2793(584,⋅)
χ2793(857,⋅)
χ2793(887,⋅)
χ2793(908,⋅)
χ2793(983,⋅)
χ2793(1055,⋅)
χ2793(1067,⋅)
χ2793(1286,⋅)
χ2793(1307,⋅)
χ2793(1382,⋅)
χ2793(1454,⋅)
χ2793(1466,⋅)
χ2793(1655,⋅)
χ2793(1706,⋅)
χ2793(1781,⋅)
χ2793(1853,⋅)
χ2793(1865,⋅)
χ2793(2054,⋅)
χ2793(2084,⋅)
χ2793(2105,⋅)
χ2793(2180,⋅)
χ2793(2252,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(932,2110,2206) → (−1,e(4237),e(1813))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 20 |
χ2793(269,a) |
−1 | 1 | e(638) | e(6316) | e(6338) | e(218) | e(6346) | e(4217) | e(6343) | e(6332) | e(6347) | e(76) |