Properties

Label 2793.269
Modulus 27932793
Conductor 27932793
Order 126126
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([63,111,91]))
 
pari: [g,chi] = znchar(Mod(269,2793))
 

Basic properties

Modulus: 27932793
Conductor: 27932793
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 126126
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2793.er

χ2793(59,)\chi_{2793}(59,\cdot) χ2793(89,)\chi_{2793}(89,\cdot) χ2793(110,)\chi_{2793}(110,\cdot) χ2793(185,)\chi_{2793}(185,\cdot) χ2793(257,)\chi_{2793}(257,\cdot) χ2793(269,)\chi_{2793}(269,\cdot) χ2793(458,)\chi_{2793}(458,\cdot) χ2793(488,)\chi_{2793}(488,\cdot) χ2793(584,)\chi_{2793}(584,\cdot) χ2793(857,)\chi_{2793}(857,\cdot) χ2793(887,)\chi_{2793}(887,\cdot) χ2793(908,)\chi_{2793}(908,\cdot) χ2793(983,)\chi_{2793}(983,\cdot) χ2793(1055,)\chi_{2793}(1055,\cdot) χ2793(1067,)\chi_{2793}(1067,\cdot) χ2793(1286,)\chi_{2793}(1286,\cdot) χ2793(1307,)\chi_{2793}(1307,\cdot) χ2793(1382,)\chi_{2793}(1382,\cdot) χ2793(1454,)\chi_{2793}(1454,\cdot) χ2793(1466,)\chi_{2793}(1466,\cdot) χ2793(1655,)\chi_{2793}(1655,\cdot) χ2793(1706,)\chi_{2793}(1706,\cdot) χ2793(1781,)\chi_{2793}(1781,\cdot) χ2793(1853,)\chi_{2793}(1853,\cdot) χ2793(1865,)\chi_{2793}(1865,\cdot) χ2793(2054,)\chi_{2793}(2054,\cdot) χ2793(2084,)\chi_{2793}(2084,\cdot) χ2793(2105,)\chi_{2793}(2105,\cdot) χ2793(2180,)\chi_{2793}(2180,\cdot) χ2793(2252,)\chi_{2793}(2252,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ63)\Q(\zeta_{63})
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

(932,2110,2206)(932,2110,2206)(1,e(3742),e(1318))(-1,e\left(\frac{37}{42}\right),e\left(\frac{13}{18}\right))

First values

aa 1-11122445588101011111313161617172020
χ2793(269,a) \chi_{ 2793 }(269, a) 1-111e(863)e\left(\frac{8}{63}\right)e(1663)e\left(\frac{16}{63}\right)e(3863)e\left(\frac{38}{63}\right)e(821)e\left(\frac{8}{21}\right)e(4663)e\left(\frac{46}{63}\right)e(1742)e\left(\frac{17}{42}\right)e(4363)e\left(\frac{43}{63}\right)e(3263)e\left(\frac{32}{63}\right)e(4763)e\left(\frac{47}{63}\right)e(67)e\left(\frac{6}{7}\right)
sage: chi.jacobi_sum(n)
 
χ2793(269,a)   \chi_{ 2793 }(269,a) \; at   a=\;a = e.g. 2