Properties

Label 1-287-287.251-r1-0-0
Degree 11
Conductor 287287
Sign 0.389+0.920i-0.389 + 0.920i
Analytic cond. 30.842430.8424
Root an. cond. 30.842430.8424
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.309 + 0.951i)2-s i·3-s + (−0.809 − 0.587i)4-s + (−0.809 − 0.587i)5-s + (0.951 + 0.309i)6-s + (0.809 − 0.587i)8-s − 9-s + (0.809 − 0.587i)10-s + (−0.587 − 0.809i)11-s + (−0.587 + 0.809i)12-s + (−0.951 − 0.309i)13-s + (−0.587 + 0.809i)15-s + (0.309 + 0.951i)16-s + (−0.587 − 0.809i)17-s + (0.309 − 0.951i)18-s + (−0.951 + 0.309i)19-s + ⋯
L(s)  = 1  + (−0.309 + 0.951i)2-s i·3-s + (−0.809 − 0.587i)4-s + (−0.809 − 0.587i)5-s + (0.951 + 0.309i)6-s + (0.809 − 0.587i)8-s − 9-s + (0.809 − 0.587i)10-s + (−0.587 − 0.809i)11-s + (−0.587 + 0.809i)12-s + (−0.951 − 0.309i)13-s + (−0.587 + 0.809i)15-s + (0.309 + 0.951i)16-s + (−0.587 − 0.809i)17-s + (0.309 − 0.951i)18-s + (−0.951 + 0.309i)19-s + ⋯

Functional equation

Λ(s)=(287s/2ΓR(s+1)L(s)=((0.389+0.920i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.389 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(287s/2ΓR(s+1)L(s)=((0.389+0.920i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.389 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 287287    =    7417 \cdot 41
Sign: 0.389+0.920i-0.389 + 0.920i
Analytic conductor: 30.842430.8424
Root analytic conductor: 30.842430.8424
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ287(251,)\chi_{287} (251, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 287, (1: ), 0.389+0.920i)(1,\ 287,\ (1:\ ),\ -0.389 + 0.920i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.02066773276+0.03119814572i0.02066773276 + 0.03119814572i
L(12)L(\frac12) \approx 0.02066773276+0.03119814572i0.02066773276 + 0.03119814572i
L(1)L(1) \approx 0.52827651500.1096462889i0.5282765150 - 0.1096462889i
L(1)L(1) \approx 0.52827651500.1096462889i0.5282765150 - 0.1096462889i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
41 1 1
good2 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
3 1iT 1 - iT
5 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
11 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
13 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
17 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
19 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
23 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
29 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
31 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
37 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
43 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
47 1+(0.951+0.309i)T 1 + (0.951 + 0.309i)T
53 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
59 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
61 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
67 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
71 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
73 1+T 1 + T
79 1+iT 1 + iT
83 1T 1 - T
89 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
97 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−26.2618288371138569108278464005, −25.54961804520272489362543645191, −23.64165565409548231714646403766, −23.03664031661121009105192034401, −21.96588791567275962474291493270, −21.55307649921809511523385480853, −20.369536081133056384568720761753, −19.686539712772585211877664663098, −18.9661489495003411027809453310, −17.64763003688306205866918181235, −17.02900288614142827186272113869, −15.64202368798136138747286051610, −15.01048149879606891316574612592, −13.92991114076731747577077184860, −12.53663915937768998193972532309, −11.745184089856135070260853138504, −10.66539958151823095189533793057, −10.25564999934999370812723826972, −9.06188210486932779510738496456, −8.138241777277962834325095149313, −6.939774611981438685836135388985, −5.00322201293056704211648334289, −4.27010668845106669949050576465, −3.22211247068561373552604307447, −2.19426289228481967050272913474, 0.018550613062762027050536024969, 0.76587859352790840308647731221, 2.59473790514954902161892399996, 4.37198551606160517797497939082, 5.40752614971410083779084095659, 6.52355112591131929073065131536, 7.51445403985258711971261054104, 8.24166921052364505074934305975, 8.960661453641624206648728229813, 10.48082081193990480392659763850, 11.730035793131516981402409593881, 12.76747130206111533800589152523, 13.51751543130544333997876402834, 14.591972237485250752851005908647, 15.549751663850667546423227134186, 16.53408295070467286861380541658, 17.25670464153243512483762778530, 18.27276853854396189115327217184, 19.16211719540853663266890891209, 19.6562925651200838007481976496, 20.92645121702869329314724931416, 22.55962473224938814245343922434, 23.1084981196675410394782849823, 24.20209087445321641251444855063, 24.43370746381753036295774193246

Graph of the ZZ-function along the critical line