Properties

Label 287.251
Modulus 287287
Conductor 287287
Order 2020
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(287, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,11]))
 
pari: [g,chi] = znchar(Mod(251,287))
 

Basic properties

Modulus: 287287
Conductor: 287287
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 287.t

χ287(20,)\chi_{287}(20,\cdot) χ287(62,)\chi_{287}(62,\cdot) χ287(90,)\chi_{287}(90,\cdot) χ287(118,)\chi_{287}(118,\cdot) χ287(125,)\chi_{287}(125,\cdot) χ287(244,)\chi_{287}(244,\cdot) χ287(251,)\chi_{287}(251,\cdot) χ287(279,)\chi_{287}(279,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: 20.0.1241291203716901419760482976136252014889.1

Values on generators

(206,211)(206,211)(1,e(1120))(-1,e\left(\frac{11}{20}\right))

First values

aa 1-11122334455668899101011111212
χ287(251,a) \chi_{ 287 }(251, a) 1-111e(310)e\left(\frac{3}{10}\right)i-ie(35)e\left(\frac{3}{5}\right)e(35)e\left(\frac{3}{5}\right)e(120)e\left(\frac{1}{20}\right)e(910)e\left(\frac{9}{10}\right)1-1e(910)e\left(\frac{9}{10}\right)e(1320)e\left(\frac{13}{20}\right)e(720)e\left(\frac{7}{20}\right)
sage: chi.jacobi_sum(n)
 
χ287(251,a)   \chi_{ 287 }(251,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ287(251,))   \tau_{ a }( \chi_{ 287 }(251,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ287(251,),χ287(n,))   J(\chi_{ 287 }(251,·),\chi_{ 287 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ287(251,))  K(a,b,\chi_{ 287 }(251,·)) \; at   a,b=\; a,b = e.g. 1,2