L(s) = 1 | + (−0.0490 − 0.998i)3-s + (0.514 + 0.857i)5-s + (0.634 + 0.773i)7-s + (−0.995 + 0.0980i)9-s + (0.941 − 0.336i)11-s + (0.242 + 0.970i)13-s + (0.831 − 0.555i)15-s + (−0.831 − 0.555i)17-s + (0.146 − 0.989i)19-s + (0.740 − 0.671i)21-s + (−0.290 + 0.956i)23-s + (−0.471 + 0.881i)25-s + (0.146 + 0.989i)27-s + (0.427 + 0.903i)29-s + (−0.382 + 0.923i)31-s + ⋯ |
L(s) = 1 | + (−0.0490 − 0.998i)3-s + (0.514 + 0.857i)5-s + (0.634 + 0.773i)7-s + (−0.995 + 0.0980i)9-s + (0.941 − 0.336i)11-s + (0.242 + 0.970i)13-s + (0.831 − 0.555i)15-s + (−0.831 − 0.555i)17-s + (0.146 − 0.989i)19-s + (0.740 − 0.671i)21-s + (−0.290 + 0.956i)23-s + (−0.471 + 0.881i)25-s + (0.146 + 0.989i)27-s + (0.427 + 0.903i)29-s + (−0.382 + 0.923i)31-s + ⋯ |
Λ(s)=(=(512s/2ΓR(s)L(s)(0.953+0.302i)Λ(1−s)
Λ(s)=(=(512s/2ΓR(s)L(s)(0.953+0.302i)Λ(1−s)
Degree: |
1 |
Conductor: |
512
= 29
|
Sign: |
0.953+0.302i
|
Analytic conductor: |
2.37771 |
Root analytic conductor: |
2.37771 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ512(245,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 512, (0: ), 0.953+0.302i)
|
Particular Values
L(21) |
≈ |
1.530829861+0.2366857605i |
L(21) |
≈ |
1.530829861+0.2366857605i |
L(1) |
≈ |
1.218845819+0.005035299893i |
L(1) |
≈ |
1.218845819+0.005035299893i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1+(−0.0490−0.998i)T |
| 5 | 1+(0.514+0.857i)T |
| 7 | 1+(0.634+0.773i)T |
| 11 | 1+(0.941−0.336i)T |
| 13 | 1+(0.242+0.970i)T |
| 17 | 1+(−0.831−0.555i)T |
| 19 | 1+(0.146−0.989i)T |
| 23 | 1+(−0.290+0.956i)T |
| 29 | 1+(0.427+0.903i)T |
| 31 | 1+(−0.382+0.923i)T |
| 37 | 1+(0.803+0.595i)T |
| 41 | 1+(−0.471−0.881i)T |
| 43 | 1+(0.998+0.0490i)T |
| 47 | 1+(0.195+0.980i)T |
| 53 | 1+(0.427−0.903i)T |
| 59 | 1+(−0.242+0.970i)T |
| 61 | 1+(−0.740−0.671i)T |
| 67 | 1+(0.671−0.740i)T |
| 71 | 1+(0.0980−0.995i)T |
| 73 | 1+(0.634−0.773i)T |
| 79 | 1+(−0.980−0.195i)T |
| 83 | 1+(0.803−0.595i)T |
| 89 | 1+(−0.290−0.956i)T |
| 97 | 1+(0.923+0.382i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.400060768901990847914242631136, −22.629471432043311488705468427634, −21.78363597289115771593291666145, −20.92516027972586039061982698262, −20.2198723324637560993018779716, −19.89868259040728190572909719471, −18.19278626522944231668752868722, −17.21466230185933361766022929615, −16.951817495782158936364231496872, −15.96408214114949230013754065496, −14.94188965154665752692704714619, −14.23897172266301992305461631469, −13.29238942899257562179307841560, −12.25667946156247018307894599656, −11.228123139975478206616664837764, −10.33239020559081348223531983323, −9.65070106992332957304313285183, −8.62151620533134204772875191064, −7.931021629750403635640637670706, −6.32085323878049252279779442390, −5.49468265018190092683157301734, −4.332806081156152388540296837815, −3.97845667555580937062240757306, −2.270579838064357598817104524082, −0.92723806276324261295685379671,
1.439749116307085072511916291220, 2.244248272348536917661864665919, 3.264607724906605612426606248653, 4.86352463805299283634888286453, 6.00245319961642583326545623140, 6.6881794698920958107892932437, 7.45429948201600306964090752424, 8.825473819571685455538993550015, 9.254796835510365924065295365615, 10.980322613423635114501607887869, 11.441840025918725379257659726424, 12.24961207826437262514021878096, 13.56492499903197363372162752997, 14.032854157724690267472272301595, 14.80525777408425338632790944229, 15.91367095381508676309297805097, 17.20135050582826908948903436348, 17.85594156777888818884957003582, 18.43589382398637409085495844289, 19.27139068990553341829736336613, 20.00154370561318351448894369156, 21.37971552705614259102134916600, 21.95702339550362205653638439958, 22.69978114095606860568299827189, 23.92117699815791440211154893119