L(s) = 1 | + (−0.0490 − 0.998i)3-s + (0.514 + 0.857i)5-s + (0.634 + 0.773i)7-s + (−0.995 + 0.0980i)9-s + (0.941 − 0.336i)11-s + (0.242 + 0.970i)13-s + (0.831 − 0.555i)15-s + (−0.831 − 0.555i)17-s + (0.146 − 0.989i)19-s + (0.740 − 0.671i)21-s + (−0.290 + 0.956i)23-s + (−0.471 + 0.881i)25-s + (0.146 + 0.989i)27-s + (0.427 + 0.903i)29-s + (−0.382 + 0.923i)31-s + ⋯ |
L(s) = 1 | + (−0.0490 − 0.998i)3-s + (0.514 + 0.857i)5-s + (0.634 + 0.773i)7-s + (−0.995 + 0.0980i)9-s + (0.941 − 0.336i)11-s + (0.242 + 0.970i)13-s + (0.831 − 0.555i)15-s + (−0.831 − 0.555i)17-s + (0.146 − 0.989i)19-s + (0.740 − 0.671i)21-s + (−0.290 + 0.956i)23-s + (−0.471 + 0.881i)25-s + (0.146 + 0.989i)27-s + (0.427 + 0.903i)29-s + (−0.382 + 0.923i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 512 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.953 + 0.302i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 512 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.953 + 0.302i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.530829861 + 0.2366857605i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.530829861 + 0.2366857605i\) |
\(L(1)\) |
\(\approx\) |
\(1.218845819 + 0.005035299893i\) |
\(L(1)\) |
\(\approx\) |
\(1.218845819 + 0.005035299893i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 + (-0.0490 - 0.998i)T \) |
| 5 | \( 1 + (0.514 + 0.857i)T \) |
| 7 | \( 1 + (0.634 + 0.773i)T \) |
| 11 | \( 1 + (0.941 - 0.336i)T \) |
| 13 | \( 1 + (0.242 + 0.970i)T \) |
| 17 | \( 1 + (-0.831 - 0.555i)T \) |
| 19 | \( 1 + (0.146 - 0.989i)T \) |
| 23 | \( 1 + (-0.290 + 0.956i)T \) |
| 29 | \( 1 + (0.427 + 0.903i)T \) |
| 31 | \( 1 + (-0.382 + 0.923i)T \) |
| 37 | \( 1 + (0.803 + 0.595i)T \) |
| 41 | \( 1 + (-0.471 - 0.881i)T \) |
| 43 | \( 1 + (0.998 + 0.0490i)T \) |
| 47 | \( 1 + (0.195 + 0.980i)T \) |
| 53 | \( 1 + (0.427 - 0.903i)T \) |
| 59 | \( 1 + (-0.242 + 0.970i)T \) |
| 61 | \( 1 + (-0.740 - 0.671i)T \) |
| 67 | \( 1 + (0.671 - 0.740i)T \) |
| 71 | \( 1 + (0.0980 - 0.995i)T \) |
| 73 | \( 1 + (0.634 - 0.773i)T \) |
| 79 | \( 1 + (-0.980 - 0.195i)T \) |
| 83 | \( 1 + (0.803 - 0.595i)T \) |
| 89 | \( 1 + (-0.290 - 0.956i)T \) |
| 97 | \( 1 + (0.923 + 0.382i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.400060768901990847914242631136, −22.629471432043311488705468427634, −21.78363597289115771593291666145, −20.92516027972586039061982698262, −20.2198723324637560993018779716, −19.89868259040728190572909719471, −18.19278626522944231668752868722, −17.21466230185933361766022929615, −16.951817495782158936364231496872, −15.96408214114949230013754065496, −14.94188965154665752692704714619, −14.23897172266301992305461631469, −13.29238942899257562179307841560, −12.25667946156247018307894599656, −11.228123139975478206616664837764, −10.33239020559081348223531983323, −9.65070106992332957304313285183, −8.62151620533134204772875191064, −7.931021629750403635640637670706, −6.32085323878049252279779442390, −5.49468265018190092683157301734, −4.332806081156152388540296837815, −3.97845667555580937062240757306, −2.270579838064357598817104524082, −0.92723806276324261295685379671,
1.439749116307085072511916291220, 2.244248272348536917661864665919, 3.264607724906605612426606248653, 4.86352463805299283634888286453, 6.00245319961642583326545623140, 6.6881794698920958107892932437, 7.45429948201600306964090752424, 8.825473819571685455538993550015, 9.254796835510365924065295365615, 10.980322613423635114501607887869, 11.441840025918725379257659726424, 12.24961207826437262514021878096, 13.56492499903197363372162752997, 14.032854157724690267472272301595, 14.80525777408425338632790944229, 15.91367095381508676309297805097, 17.20135050582826908948903436348, 17.85594156777888818884957003582, 18.43589382398637409085495844289, 19.27139068990553341829736336613, 20.00154370561318351448894369156, 21.37971552705614259102134916600, 21.95702339550362205653638439958, 22.69978114095606860568299827189, 23.92117699815791440211154893119