L(s) = 1 | + (0.258 + 0.965i)3-s + 7-s + (−0.866 + 0.5i)9-s + (−0.707 + 0.707i)11-s + (−0.965 − 0.258i)13-s + (−0.866 − 0.5i)17-s + (0.258 + 0.965i)21-s + (−0.5 − 0.866i)23-s + (−0.707 − 0.707i)27-s + (−0.258 + 0.965i)29-s − 31-s + (−0.866 − 0.5i)33-s + (0.707 + 0.707i)37-s − i·39-s + (−0.866 − 0.5i)41-s + ⋯ |
L(s) = 1 | + (0.258 + 0.965i)3-s + 7-s + (−0.866 + 0.5i)9-s + (−0.707 + 0.707i)11-s + (−0.965 − 0.258i)13-s + (−0.866 − 0.5i)17-s + (0.258 + 0.965i)21-s + (−0.5 − 0.866i)23-s + (−0.707 − 0.707i)27-s + (−0.258 + 0.965i)29-s − 31-s + (−0.866 − 0.5i)33-s + (0.707 + 0.707i)37-s − i·39-s + (−0.866 − 0.5i)41-s + ⋯ |
Λ(s)=(=(3040s/2ΓR(s)L(s)(0.339−0.940i)Λ(1−s)
Λ(s)=(=(3040s/2ΓR(s)L(s)(0.339−0.940i)Λ(1−s)
Degree: |
1 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
0.339−0.940i
|
Analytic conductor: |
14.1177 |
Root analytic conductor: |
14.1177 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(1603,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3040, (0: ), 0.339−0.940i)
|
Particular Values
L(21) |
≈ |
0.5206312864−0.3656551643i |
L(21) |
≈ |
0.5206312864−0.3656551643i |
L(1) |
≈ |
0.8972323883+0.2379339021i |
L(1) |
≈ |
0.8972323883+0.2379339021i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(0.258+0.965i)T |
| 7 | 1+T |
| 11 | 1+(−0.707+0.707i)T |
| 13 | 1+(−0.965−0.258i)T |
| 17 | 1+(−0.866−0.5i)T |
| 23 | 1+(−0.5−0.866i)T |
| 29 | 1+(−0.258+0.965i)T |
| 31 | 1−T |
| 37 | 1+(0.707+0.707i)T |
| 41 | 1+(−0.866−0.5i)T |
| 43 | 1+(0.965−0.258i)T |
| 47 | 1+(−0.866+0.5i)T |
| 53 | 1+(0.258−0.965i)T |
| 59 | 1+(−0.258−0.965i)T |
| 61 | 1+(0.258−0.965i)T |
| 67 | 1+(0.965+0.258i)T |
| 71 | 1+(−0.866−0.5i)T |
| 73 | 1+(0.5−0.866i)T |
| 79 | 1+(0.5−0.866i)T |
| 83 | 1+(−0.707+0.707i)T |
| 89 | 1+(0.866−0.5i)T |
| 97 | 1+(0.866+0.5i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.16241809913690505143879986265, −18.402480352131280912762862744972, −17.881671730651833156812224280276, −17.26297435327815559230908731352, −16.58032696230903654728601786598, −15.50486192164053998397517065044, −14.853176387867043233527137230190, −14.22564342059575647270358642751, −13.504973559021119744669308133536, −12.98199132789938675464489480913, −12.107929335585584697433247171123, −11.42211830678607323338914591558, −10.9420773414180795470585845822, −9.869797136301069146145578769, −8.95683834717213647935892005112, −8.30646619757575633207149356173, −7.633583960184287843032565241786, −7.162268694884283062008758540408, −6.03668350055943569997160785186, −5.52163750365518344821702755153, −4.54978046302637657476002817224, −3.63781793718226064977236279095, −2.48124484396294867083388948631, −2.07657834972848243069741233527, −1.0746813537308968279411867846,
0.18137367803221059009588473625, 1.9270897306531035675326465035, 2.41595409652871788546476312517, 3.404480109324258684999602424415, 4.44327097960613524523791662575, 4.90846360943208005776683281135, 5.40746118770996434434946762497, 6.659845801220396281745275831817, 7.58574214251201929375111819299, 8.13651855282680709953677582958, 8.97230786690852187162210618960, 9.65307621932029251086638002818, 10.42790328989838027720105335769, 10.94083972400298876315405860957, 11.70670759002855669978973005818, 12.53975440083223720215611116250, 13.34762381730095770680165418102, 14.37665735850164936449399693994, 14.63629907758277934974236630721, 15.37005081070105645700279262139, 16.01049801487803763710984212846, 16.78142495757680166704734205776, 17.53324405414937795457311603819, 18.04706080828723796692529853077, 18.859780672912939855511895698105