Properties

Label 3040.1603
Modulus 30403040
Conductor 30403040
Order 2424
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3040, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,9,18,8]))
 
pari: [g,chi] = znchar(Mod(1603,3040))
 

Basic properties

Modulus: 30403040
Conductor: 30403040
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2424
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3040.ev

χ3040(83,)\chi_{3040}(83,\cdot) χ3040(163,)\chi_{3040}(163,\cdot) χ3040(1147,)\chi_{3040}(1147,\cdot) χ3040(1227,)\chi_{3040}(1227,\cdot) χ3040(1603,)\chi_{3040}(1603,\cdot) χ3040(1683,)\chi_{3040}(1683,\cdot) χ3040(2667,)\chi_{3040}(2667,\cdot) χ3040(2747,)\chi_{3040}(2747,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ24)\Q(\zeta_{24})
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

(191,2661,1217,1921)(191,2661,1217,1921)(1,e(38),i,e(13))(-1,e\left(\frac{3}{8}\right),-i,e\left(\frac{1}{3}\right))

First values

aa 1-1113377991111131317172121232327272929
χ3040(1603,a) \chi_{ 3040 }(1603, a) 1111e(524)e\left(\frac{5}{24}\right)11e(512)e\left(\frac{5}{12}\right)e(38)e\left(\frac{3}{8}\right)e(1324)e\left(\frac{13}{24}\right)e(712)e\left(\frac{7}{12}\right)e(524)e\left(\frac{5}{24}\right)e(23)e\left(\frac{2}{3}\right)e(58)e\left(\frac{5}{8}\right)e(724)e\left(\frac{7}{24}\right)
sage: chi.jacobi_sum(n)
 
χ3040(1603,a)   \chi_{ 3040 }(1603,a) \; at   a=\;a = e.g. 2