Properties

Label 3040.1603
Modulus $3040$
Conductor $3040$
Order $24$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3040, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,9,18,8]))
 
pari: [g,chi] = znchar(Mod(1603,3040))
 

Basic properties

Modulus: \(3040\)
Conductor: \(3040\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3040.ev

\(\chi_{3040}(83,\cdot)\) \(\chi_{3040}(163,\cdot)\) \(\chi_{3040}(1147,\cdot)\) \(\chi_{3040}(1227,\cdot)\) \(\chi_{3040}(1603,\cdot)\) \(\chi_{3040}(1683,\cdot)\) \(\chi_{3040}(2667,\cdot)\) \(\chi_{3040}(2747,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((191,2661,1217,1921)\) → \((-1,e\left(\frac{3}{8}\right),-i,e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 3040 }(1603, a) \) \(1\)\(1\)\(e\left(\frac{5}{24}\right)\)\(1\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{7}{24}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3040 }(1603,a) \;\) at \(\;a = \) e.g. 2