sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3040, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([12,9,18,8]))
pari:[g,chi] = znchar(Mod(1603,3040))
Modulus: | 3040 | |
Conductor: | 3040 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 24 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ3040(83,⋅)
χ3040(163,⋅)
χ3040(1147,⋅)
χ3040(1227,⋅)
χ3040(1603,⋅)
χ3040(1683,⋅)
χ3040(2667,⋅)
χ3040(2747,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(191,2661,1217,1921) → (−1,e(83),−i,e(31))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 21 | 23 | 27 | 29 |
χ3040(1603,a) |
1 | 1 | e(245) | 1 | e(125) | e(83) | e(2413) | e(127) | e(245) | e(32) | e(85) | e(247) |
sage:chi.jacobi_sum(n)