Properties

Label 3040.ev
Modulus 30403040
Conductor 30403040
Order 2424
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3040, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,21,18,8]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(83,3040))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 30403040
Conductor: 30403040
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2424
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ24)\Q(\zeta_{24})
Fixed field: Number field defined by a degree 24 polynomial

Characters in Galois orbit

Character 1-1 11 33 77 99 1111 1313 1717 2121 2323 2727 2929
χ3040(83,)\chi_{3040}(83,\cdot) 11 11 e(1724)e\left(\frac{17}{24}\right) 11 e(512)e\left(\frac{5}{12}\right) e(78)e\left(\frac{7}{8}\right) e(124)e\left(\frac{1}{24}\right) e(712)e\left(\frac{7}{12}\right) e(1724)e\left(\frac{17}{24}\right) e(23)e\left(\frac{2}{3}\right) e(18)e\left(\frac{1}{8}\right) e(1924)e\left(\frac{19}{24}\right)
χ3040(163,)\chi_{3040}(163,\cdot) 11 11 e(1324)e\left(\frac{13}{24}\right) 11 e(112)e\left(\frac{1}{12}\right) e(38)e\left(\frac{3}{8}\right) e(524)e\left(\frac{5}{24}\right) e(1112)e\left(\frac{11}{12}\right) e(1324)e\left(\frac{13}{24}\right) e(13)e\left(\frac{1}{3}\right) e(58)e\left(\frac{5}{8}\right) e(2324)e\left(\frac{23}{24}\right)
χ3040(1147,)\chi_{3040}(1147,\cdot) 11 11 e(2324)e\left(\frac{23}{24}\right) 11 e(1112)e\left(\frac{11}{12}\right) e(18)e\left(\frac{1}{8}\right) e(724)e\left(\frac{7}{24}\right) e(112)e\left(\frac{1}{12}\right) e(2324)e\left(\frac{23}{24}\right) e(23)e\left(\frac{2}{3}\right) e(78)e\left(\frac{7}{8}\right) e(1324)e\left(\frac{13}{24}\right)
χ3040(1227,)\chi_{3040}(1227,\cdot) 11 11 e(1924)e\left(\frac{19}{24}\right) 11 e(712)e\left(\frac{7}{12}\right) e(58)e\left(\frac{5}{8}\right) e(1124)e\left(\frac{11}{24}\right) e(512)e\left(\frac{5}{12}\right) e(1924)e\left(\frac{19}{24}\right) e(13)e\left(\frac{1}{3}\right) e(38)e\left(\frac{3}{8}\right) e(1724)e\left(\frac{17}{24}\right)
χ3040(1603,)\chi_{3040}(1603,\cdot) 11 11 e(524)e\left(\frac{5}{24}\right) 11 e(512)e\left(\frac{5}{12}\right) e(38)e\left(\frac{3}{8}\right) e(1324)e\left(\frac{13}{24}\right) e(712)e\left(\frac{7}{12}\right) e(524)e\left(\frac{5}{24}\right) e(23)e\left(\frac{2}{3}\right) e(58)e\left(\frac{5}{8}\right) e(724)e\left(\frac{7}{24}\right)
χ3040(1683,)\chi_{3040}(1683,\cdot) 11 11 e(124)e\left(\frac{1}{24}\right) 11 e(112)e\left(\frac{1}{12}\right) e(78)e\left(\frac{7}{8}\right) e(1724)e\left(\frac{17}{24}\right) e(1112)e\left(\frac{11}{12}\right) e(124)e\left(\frac{1}{24}\right) e(13)e\left(\frac{1}{3}\right) e(18)e\left(\frac{1}{8}\right) e(1124)e\left(\frac{11}{24}\right)
χ3040(2667,)\chi_{3040}(2667,\cdot) 11 11 e(1124)e\left(\frac{11}{24}\right) 11 e(1112)e\left(\frac{11}{12}\right) e(58)e\left(\frac{5}{8}\right) e(1924)e\left(\frac{19}{24}\right) e(112)e\left(\frac{1}{12}\right) e(1124)e\left(\frac{11}{24}\right) e(23)e\left(\frac{2}{3}\right) e(38)e\left(\frac{3}{8}\right) e(124)e\left(\frac{1}{24}\right)
χ3040(2747,)\chi_{3040}(2747,\cdot) 11 11 e(724)e\left(\frac{7}{24}\right) 11 e(712)e\left(\frac{7}{12}\right) e(18)e\left(\frac{1}{8}\right) e(2324)e\left(\frac{23}{24}\right) e(512)e\left(\frac{5}{12}\right) e(724)e\left(\frac{7}{24}\right) e(13)e\left(\frac{1}{3}\right) e(78)e\left(\frac{7}{8}\right) e(524)e\left(\frac{5}{24}\right)