L(s) = 1 | + (−0.791 + 0.611i)2-s + (0.639 + 0.768i)3-s + (0.252 − 0.967i)4-s + (−0.934 + 0.357i)5-s + (−0.976 − 0.217i)6-s + (0.181 − 0.983i)7-s + (0.391 + 0.920i)8-s + (−0.181 + 0.983i)9-s + (0.520 − 0.853i)10-s + (−0.581 − 0.813i)11-s + (0.905 − 0.424i)12-s + (0.791 + 0.611i)13-s + (0.457 + 0.889i)14-s + (−0.872 − 0.489i)15-s + (−0.872 − 0.489i)16-s + (0.581 + 0.813i)17-s + ⋯ |
L(s) = 1 | + (−0.791 + 0.611i)2-s + (0.639 + 0.768i)3-s + (0.252 − 0.967i)4-s + (−0.934 + 0.357i)5-s + (−0.976 − 0.217i)6-s + (0.181 − 0.983i)7-s + (0.391 + 0.920i)8-s + (−0.181 + 0.983i)9-s + (0.520 − 0.853i)10-s + (−0.581 − 0.813i)11-s + (0.905 − 0.424i)12-s + (0.791 + 0.611i)13-s + (0.457 + 0.889i)14-s + (−0.872 − 0.489i)15-s + (−0.872 − 0.489i)16-s + (0.581 + 0.813i)17-s + ⋯ |
Λ(s)=(=(431s/2ΓR(s+1)L(s)(−0.994−0.102i)Λ(1−s)
Λ(s)=(=(431s/2ΓR(s+1)L(s)(−0.994−0.102i)Λ(1−s)
Degree: |
1 |
Conductor: |
431
|
Sign: |
−0.994−0.102i
|
Analytic conductor: |
46.3173 |
Root analytic conductor: |
46.3173 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ431(321,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 431, (1: ), −0.994−0.102i)
|
Particular Values
L(21) |
≈ |
−0.03797723673+0.7360573620i |
L(21) |
≈ |
−0.03797723673+0.7360573620i |
L(1) |
≈ |
0.6147406666+0.3822929351i |
L(1) |
≈ |
0.6147406666+0.3822929351i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 431 | 1 |
good | 2 | 1+(−0.791+0.611i)T |
| 3 | 1+(0.639+0.768i)T |
| 5 | 1+(−0.934+0.357i)T |
| 7 | 1+(0.181−0.983i)T |
| 11 | 1+(−0.581−0.813i)T |
| 13 | 1+(0.791+0.611i)T |
| 17 | 1+(0.581+0.813i)T |
| 19 | 1+(−0.934−0.357i)T |
| 23 | 1+(0.989−0.145i)T |
| 29 | 1+(0.252+0.967i)T |
| 31 | 1+(0.976−0.217i)T |
| 37 | 1+(0.457+0.889i)T |
| 41 | 1+(−0.872−0.489i)T |
| 43 | 1+(−0.520−0.853i)T |
| 47 | 1+(−0.833+0.551i)T |
| 53 | 1+(0.833+0.551i)T |
| 59 | 1+(−0.791+0.611i)T |
| 61 | 1+(−0.997−0.0729i)T |
| 67 | 1+(0.457+0.889i)T |
| 71 | 1+(−0.833+0.551i)T |
| 73 | 1+(0.0365+0.999i)T |
| 79 | 1+(0.694+0.719i)T |
| 83 | 1+(−0.639−0.768i)T |
| 89 | 1+(−0.109−0.994i)T |
| 97 | 1+(−0.694+0.719i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.32437514806917414922226626491, −22.88552776021996924358965120872, −21.084223703476151551292584195976, −20.89485635785766689016797063497, −19.8340754084665446435525001367, −19.16562712329683816780674017075, −18.4057910613170249295487813861, −17.87313884029411718474303134460, −16.635298671919292336514947289138, −15.48559676849937643181284537509, −15.0322527080825143108612511483, −13.38536179775621607586131183932, −12.62355049812096299832614371176, −12.02437748854102773892133407567, −11.18730857409425871276185661647, −9.86157412318616852667757695060, −8.86385730673139269856494682388, −8.156335026848982113398012962341, −7.61801166510335389827303130530, −6.42187451134918192542622559624, −4.789178324666440653435225627522, −3.40985311545358959716133050484, −2.609990696268498407535665555282, −1.46427878548844375973443525418, −0.262913141537684962276293345,
1.20815840749251948340458226474, 2.9151956611626613839114720363, 3.981506704128005679793783573842, 4.92887214798077200464641155835, 6.39320388723251028052764222850, 7.376616316707374834991222140643, 8.34721166219066806993796628548, 8.700412282004836934038311771043, 10.22252920232507010646570570733, 10.70356125634962043311254653499, 11.409267756616620969363920094180, 13.304950892424939250327404587285, 14.15619441406934913897619263877, 14.98393672267808756731965950660, 15.666009795827032825484936360391, 16.54434871177002591281569264495, 17.04669473061862621090238950872, 18.60993858353261144406184202693, 19.10573212993993336320688289013, 19.896166921139755606969278759701, 20.73180067361981473672629768185, 21.59155811655195449656330065087, 23.044154558732655278305992826245, 23.56843449300585105400363794463, 24.31297677790138857018078674333