Properties

Label 1-431-431.321-r1-0-0
Degree 11
Conductor 431431
Sign 0.9940.102i-0.994 - 0.102i
Analytic cond. 46.317346.3173
Root an. cond. 46.317346.3173
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.791 + 0.611i)2-s + (0.639 + 0.768i)3-s + (0.252 − 0.967i)4-s + (−0.934 + 0.357i)5-s + (−0.976 − 0.217i)6-s + (0.181 − 0.983i)7-s + (0.391 + 0.920i)8-s + (−0.181 + 0.983i)9-s + (0.520 − 0.853i)10-s + (−0.581 − 0.813i)11-s + (0.905 − 0.424i)12-s + (0.791 + 0.611i)13-s + (0.457 + 0.889i)14-s + (−0.872 − 0.489i)15-s + (−0.872 − 0.489i)16-s + (0.581 + 0.813i)17-s + ⋯
L(s)  = 1  + (−0.791 + 0.611i)2-s + (0.639 + 0.768i)3-s + (0.252 − 0.967i)4-s + (−0.934 + 0.357i)5-s + (−0.976 − 0.217i)6-s + (0.181 − 0.983i)7-s + (0.391 + 0.920i)8-s + (−0.181 + 0.983i)9-s + (0.520 − 0.853i)10-s + (−0.581 − 0.813i)11-s + (0.905 − 0.424i)12-s + (0.791 + 0.611i)13-s + (0.457 + 0.889i)14-s + (−0.872 − 0.489i)15-s + (−0.872 − 0.489i)16-s + (0.581 + 0.813i)17-s + ⋯

Functional equation

Λ(s)=(431s/2ΓR(s+1)L(s)=((0.9940.102i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 431 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.994 - 0.102i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(431s/2ΓR(s+1)L(s)=((0.9940.102i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 431 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.994 - 0.102i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 431431
Sign: 0.9940.102i-0.994 - 0.102i
Analytic conductor: 46.317346.3173
Root analytic conductor: 46.317346.3173
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ431(321,)\chi_{431} (321, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 431, (1: ), 0.9940.102i)(1,\ 431,\ (1:\ ),\ -0.994 - 0.102i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.03797723673+0.7360573620i-0.03797723673 + 0.7360573620i
L(12)L(\frac12) \approx 0.03797723673+0.7360573620i-0.03797723673 + 0.7360573620i
L(1)L(1) \approx 0.6147406666+0.3822929351i0.6147406666 + 0.3822929351i
L(1)L(1) \approx 0.6147406666+0.3822929351i0.6147406666 + 0.3822929351i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad431 1 1
good2 1+(0.791+0.611i)T 1 + (-0.791 + 0.611i)T
3 1+(0.639+0.768i)T 1 + (0.639 + 0.768i)T
5 1+(0.934+0.357i)T 1 + (-0.934 + 0.357i)T
7 1+(0.1810.983i)T 1 + (0.181 - 0.983i)T
11 1+(0.5810.813i)T 1 + (-0.581 - 0.813i)T
13 1+(0.791+0.611i)T 1 + (0.791 + 0.611i)T
17 1+(0.581+0.813i)T 1 + (0.581 + 0.813i)T
19 1+(0.9340.357i)T 1 + (-0.934 - 0.357i)T
23 1+(0.9890.145i)T 1 + (0.989 - 0.145i)T
29 1+(0.252+0.967i)T 1 + (0.252 + 0.967i)T
31 1+(0.9760.217i)T 1 + (0.976 - 0.217i)T
37 1+(0.457+0.889i)T 1 + (0.457 + 0.889i)T
41 1+(0.8720.489i)T 1 + (-0.872 - 0.489i)T
43 1+(0.5200.853i)T 1 + (-0.520 - 0.853i)T
47 1+(0.833+0.551i)T 1 + (-0.833 + 0.551i)T
53 1+(0.833+0.551i)T 1 + (0.833 + 0.551i)T
59 1+(0.791+0.611i)T 1 + (-0.791 + 0.611i)T
61 1+(0.9970.0729i)T 1 + (-0.997 - 0.0729i)T
67 1+(0.457+0.889i)T 1 + (0.457 + 0.889i)T
71 1+(0.833+0.551i)T 1 + (-0.833 + 0.551i)T
73 1+(0.0365+0.999i)T 1 + (0.0365 + 0.999i)T
79 1+(0.694+0.719i)T 1 + (0.694 + 0.719i)T
83 1+(0.6390.768i)T 1 + (-0.639 - 0.768i)T
89 1+(0.1090.994i)T 1 + (-0.109 - 0.994i)T
97 1+(0.694+0.719i)T 1 + (-0.694 + 0.719i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−23.32437514806917414922226626491, −22.88552776021996924358965120872, −21.084223703476151551292584195976, −20.89485635785766689016797063497, −19.8340754084665446435525001367, −19.16562712329683816780674017075, −18.4057910613170249295487813861, −17.87313884029411718474303134460, −16.635298671919292336514947289138, −15.48559676849937643181284537509, −15.0322527080825143108612511483, −13.38536179775621607586131183932, −12.62355049812096299832614371176, −12.02437748854102773892133407567, −11.18730857409425871276185661647, −9.86157412318616852667757695060, −8.86385730673139269856494682388, −8.156335026848982113398012962341, −7.61801166510335389827303130530, −6.42187451134918192542622559624, −4.789178324666440653435225627522, −3.40985311545358959716133050484, −2.609990696268498407535665555282, −1.46427878548844375973443525418, −0.262913141537684962276293345, 1.20815840749251948340458226474, 2.9151956611626613839114720363, 3.981506704128005679793783573842, 4.92887214798077200464641155835, 6.39320388723251028052764222850, 7.376616316707374834991222140643, 8.34721166219066806993796628548, 8.700412282004836934038311771043, 10.22252920232507010646570570733, 10.70356125634962043311254653499, 11.409267756616620969363920094180, 13.304950892424939250327404587285, 14.15619441406934913897619263877, 14.98393672267808756731965950660, 15.666009795827032825484936360391, 16.54434871177002591281569264495, 17.04669473061862621090238950872, 18.60993858353261144406184202693, 19.10573212993993336320688289013, 19.896166921139755606969278759701, 20.73180067361981473672629768185, 21.59155811655195449656330065087, 23.044154558732655278305992826245, 23.56843449300585105400363794463, 24.31297677790138857018078674333

Graph of the ZZ-function along the critical line