from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(431, base_ring=CyclotomicField(86))
M = H._module
chi = DirichletCharacter(H, M([67]))
pari: [g,chi] = znchar(Mod(321,431))
χ431(47,⋅)
χ431(94,⋅)
χ431(101,⋅)
χ431(107,⋅)
χ431(133,⋅)
χ431(141,⋅)
χ431(143,⋅)
χ431(175,⋅)
χ431(188,⋅)
χ431(202,⋅)
χ431(211,⋅)
χ431(214,⋅)
χ431(215,⋅)
χ431(239,⋅)
χ431(266,⋅)
χ431(269,⋅)
χ431(282,⋅)
χ431(286,⋅)
χ431(287,⋅)
χ431(303,⋅)
χ431(321,⋅)
χ431(323,⋅)
χ431(335,⋅)
χ431(350,⋅)
χ431(359,⋅)
χ431(367,⋅)
χ431(376,⋅)
χ431(377,⋅)
χ431(383,⋅)
χ431(395,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
7 → e(8667)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ431(321,a) |
−1 | 1 | e(4317) | e(436) | e(4334) | e(4319) | e(4323) | e(8667) | e(438) | e(4312) | e(4336) | e(4328) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)