Properties

Label 431.367
Modulus 431431
Conductor 431431
Order 8686
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(431, base_ring=CyclotomicField(86))
 
M = H._module
 
chi = DirichletCharacter(H, M([49]))
 
pari: [g,chi] = znchar(Mod(367,431))
 

Basic properties

Modulus: 431431
Conductor: 431431
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 8686
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 431.f

χ431(47,)\chi_{431}(47,\cdot) χ431(94,)\chi_{431}(94,\cdot) χ431(101,)\chi_{431}(101,\cdot) χ431(107,)\chi_{431}(107,\cdot) χ431(133,)\chi_{431}(133,\cdot) χ431(141,)\chi_{431}(141,\cdot) χ431(143,)\chi_{431}(143,\cdot) χ431(175,)\chi_{431}(175,\cdot) χ431(188,)\chi_{431}(188,\cdot) χ431(202,)\chi_{431}(202,\cdot) χ431(211,)\chi_{431}(211,\cdot) χ431(214,)\chi_{431}(214,\cdot) χ431(215,)\chi_{431}(215,\cdot) χ431(239,)\chi_{431}(239,\cdot) χ431(266,)\chi_{431}(266,\cdot) χ431(269,)\chi_{431}(269,\cdot) χ431(282,)\chi_{431}(282,\cdot) χ431(286,)\chi_{431}(286,\cdot) χ431(287,)\chi_{431}(287,\cdot) χ431(303,)\chi_{431}(303,\cdot) χ431(321,)\chi_{431}(321,\cdot) χ431(323,)\chi_{431}(323,\cdot) χ431(335,)\chi_{431}(335,\cdot) χ431(350,)\chi_{431}(350,\cdot) χ431(359,)\chi_{431}(359,\cdot) χ431(367,)\chi_{431}(367,\cdot) χ431(376,)\chi_{431}(376,\cdot) χ431(377,)\chi_{431}(377,\cdot) χ431(383,)\chi_{431}(383,\cdot) χ431(395,)\chi_{431}(395,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ43)\Q(\zeta_{43})
Fixed field: Number field defined by a degree 86 polynomial

Values on generators

77e(4986)e\left(\frac{49}{86}\right)

First values

aa 1-111223344556677889910101111
χ431(367,a) \chi_{ 431 }(367, a) 1-111e(1543)e\left(\frac{15}{43}\right)e(2343)e\left(\frac{23}{43}\right)e(3043)e\left(\frac{30}{43}\right)e(3743)e\left(\frac{37}{43}\right)e(3843)e\left(\frac{38}{43}\right)e(4986)e\left(\frac{49}{86}\right)e(243)e\left(\frac{2}{43}\right)e(343)e\left(\frac{3}{43}\right)e(943)e\left(\frac{9}{43}\right)e(743)e\left(\frac{7}{43}\right)
sage: chi.jacobi_sum(n)
 
χ431(367,a)   \chi_{ 431 }(367,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ431(367,))   \tau_{ a }( \chi_{ 431 }(367,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ431(367,),χ431(n,))   J(\chi_{ 431 }(367,·),\chi_{ 431 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ431(367,))  K(a,b,\chi_{ 431 }(367,·)) \; at   a,b=\; a,b = e.g. 1,2