Properties

Label 431.367
Modulus $431$
Conductor $431$
Order $86$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(431, base_ring=CyclotomicField(86))
 
M = H._module
 
chi = DirichletCharacter(H, M([49]))
 
pari: [g,chi] = znchar(Mod(367,431))
 

Basic properties

Modulus: \(431\)
Conductor: \(431\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(86\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 431.f

\(\chi_{431}(47,\cdot)\) \(\chi_{431}(94,\cdot)\) \(\chi_{431}(101,\cdot)\) \(\chi_{431}(107,\cdot)\) \(\chi_{431}(133,\cdot)\) \(\chi_{431}(141,\cdot)\) \(\chi_{431}(143,\cdot)\) \(\chi_{431}(175,\cdot)\) \(\chi_{431}(188,\cdot)\) \(\chi_{431}(202,\cdot)\) \(\chi_{431}(211,\cdot)\) \(\chi_{431}(214,\cdot)\) \(\chi_{431}(215,\cdot)\) \(\chi_{431}(239,\cdot)\) \(\chi_{431}(266,\cdot)\) \(\chi_{431}(269,\cdot)\) \(\chi_{431}(282,\cdot)\) \(\chi_{431}(286,\cdot)\) \(\chi_{431}(287,\cdot)\) \(\chi_{431}(303,\cdot)\) \(\chi_{431}(321,\cdot)\) \(\chi_{431}(323,\cdot)\) \(\chi_{431}(335,\cdot)\) \(\chi_{431}(350,\cdot)\) \(\chi_{431}(359,\cdot)\) \(\chi_{431}(367,\cdot)\) \(\chi_{431}(376,\cdot)\) \(\chi_{431}(377,\cdot)\) \(\chi_{431}(383,\cdot)\) \(\chi_{431}(395,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{43})$
Fixed field: Number field defined by a degree 86 polynomial

Values on generators

\(7\) → \(e\left(\frac{49}{86}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 431 }(367, a) \) \(-1\)\(1\)\(e\left(\frac{15}{43}\right)\)\(e\left(\frac{23}{43}\right)\)\(e\left(\frac{30}{43}\right)\)\(e\left(\frac{37}{43}\right)\)\(e\left(\frac{38}{43}\right)\)\(e\left(\frac{49}{86}\right)\)\(e\left(\frac{2}{43}\right)\)\(e\left(\frac{3}{43}\right)\)\(e\left(\frac{9}{43}\right)\)\(e\left(\frac{7}{43}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 431 }(367,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 431 }(367,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 431 }(367,·),\chi_{ 431 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 431 }(367,·)) \;\) at \(\; a,b = \) e.g. 1,2