Dirichlet series
L(s) = 1 | + (−0.581 + 0.813i)2-s + (−0.976 − 0.217i)3-s + (−0.322 − 0.946i)4-s + (0.639 − 0.768i)5-s + (0.744 − 0.667i)6-s + (−0.905 − 0.424i)7-s + (0.957 + 0.288i)8-s + (0.905 + 0.424i)9-s + (0.252 + 0.967i)10-s + (0.520 + 0.853i)11-s + (0.109 + 0.994i)12-s + (0.581 + 0.813i)13-s + (0.872 − 0.489i)14-s + (−0.791 + 0.611i)15-s + (−0.791 + 0.611i)16-s + (−0.520 − 0.853i)17-s + ⋯ |
L(s) = 1 | + (−0.581 + 0.813i)2-s + (−0.976 − 0.217i)3-s + (−0.322 − 0.946i)4-s + (0.639 − 0.768i)5-s + (0.744 − 0.667i)6-s + (−0.905 − 0.424i)7-s + (0.957 + 0.288i)8-s + (0.905 + 0.424i)9-s + (0.252 + 0.967i)10-s + (0.520 + 0.853i)11-s + (0.109 + 0.994i)12-s + (0.581 + 0.813i)13-s + (0.872 − 0.489i)14-s + (−0.791 + 0.611i)15-s + (−0.791 + 0.611i)16-s + (−0.520 − 0.853i)17-s + ⋯ |
Functional equation
Invariants
Degree: | \(1\) |
Conductor: | \(431\) |
Sign: | $-0.114 + 0.993i$ |
Analytic conductor: | \(46.3173\) |
Root analytic conductor: | \(46.3173\) |
Motivic weight: | \(0\) |
Rational: | no |
Arithmetic: | yes |
Character: | $\chi_{431} (367, \cdot )$ |
Primitive: | yes |
Self-dual: | no |
Analytic rank: | \(0\) |
Selberg data: | \((1,\ 431,\ (1:\ ),\ -0.114 + 0.993i)\) |
Particular Values
\(L(\frac{1}{2})\) | \(\approx\) | \(0.4531352824 + 0.5084804492i\) |
\(L(\frac12)\) | \(\approx\) | \(0.4531352824 + 0.5084804492i\) |
\(L(1)\) | \(\approx\) | \(0.5796830088 + 0.1267796929i\) |
\(L(1)\) | \(\approx\) | \(0.5796830088 + 0.1267796929i\) |
Euler product
$p$ | $F_p(T)$ | |
---|---|---|
bad | 431 | \( 1 \) |
good | 2 | \( 1 + (-0.581 + 0.813i)T \) |
3 | \( 1 + (-0.976 - 0.217i)T \) | |
5 | \( 1 + (0.639 - 0.768i)T \) | |
7 | \( 1 + (-0.905 - 0.424i)T \) | |
11 | \( 1 + (0.520 + 0.853i)T \) | |
13 | \( 1 + (0.581 + 0.813i)T \) | |
17 | \( 1 + (-0.520 - 0.853i)T \) | |
19 | \( 1 + (0.639 + 0.768i)T \) | |
23 | \( 1 + (-0.0365 - 0.999i)T \) | |
29 | \( 1 + (-0.322 + 0.946i)T \) | |
31 | \( 1 + (-0.744 - 0.667i)T \) | |
37 | \( 1 + (0.872 - 0.489i)T \) | |
41 | \( 1 + (-0.791 + 0.611i)T \) | |
43 | \( 1 + (-0.252 + 0.967i)T \) | |
47 | \( 1 + (-0.989 + 0.145i)T \) | |
53 | \( 1 + (0.989 + 0.145i)T \) | |
59 | \( 1 + (-0.581 + 0.813i)T \) | |
61 | \( 1 + (-0.694 - 0.719i)T \) | |
67 | \( 1 + (0.872 - 0.489i)T \) | |
71 | \( 1 + (-0.989 + 0.145i)T \) | |
73 | \( 1 + (-0.391 - 0.920i)T \) | |
79 | \( 1 + (-0.833 + 0.551i)T \) | |
83 | \( 1 + (0.976 + 0.217i)T \) | |
89 | \( 1 + (0.934 + 0.357i)T \) | |
97 | \( 1 + (0.833 + 0.551i)T \) | |
show more | ||
show less |
Imaginary part of the first few zeros on the critical line
−23.3219859774471935958058063443, −22.444486646877790610444131691012, −21.87641327483486464704154181685, −21.50652357483713015035318990433, −20.16007182230975209542186314915, −19.18081085287920758966878416644, −18.48000717244407418499972206988, −17.70573826557487865038619681566, −17.04608342985136205716872738287, −16.04395028241143748280506970767, −15.20921810132060322001630035248, −13.49665600180046084382113792881, −13.08499426974492885210740640572, −11.83122375514205885786744758040, −11.151153975119400456303733691232, −10.35813748852968084070271617467, −9.61813151664264416437334221562, −8.72266240450363159276766920189, −7.20832261525262466745142597609, −6.266404484287868325411459578241, −5.46680958431954477206429614341, −3.771426158136544956701515688046, −3.07798442829716368398996184886, −1.641436984638840286186835872540, −0.33450073360257433565298754872, 0.89879251394723425784393922605, 1.83596406010170896389605595472, 4.20809433026769274678871054423, 5.02335106616191417405280780990, 6.1595546855002009544894627062, 6.65966683070242713274637630487, 7.629406883218984912095104814778, 9.120588293400596742799264135307, 9.62874465801180879165644085793, 10.52929702432839516911906102759, 11.71966852318756127447844878332, 12.83597781529211140018259746536, 13.52480922289832581182265317325, 14.57467869010000778832689979411, 16.00332772576868039653040347519, 16.49860175195297351336064908283, 16.926686913782899760482604738962, 18.11758535312219673699477645946, 18.43817133550442010821400032521, 19.79339577580632745209913225705, 20.484908254777856498600620158953, 21.89430597944708043069211313198, 22.75035439374288407205342680275, 23.29766607757294342778765622896, 24.32088034503486797845544290654