L(s) = 1 | + (0.961 + 0.275i)2-s + (0.990 − 0.139i)3-s + (0.848 + 0.529i)4-s + (0.990 + 0.139i)6-s + (−0.5 − 0.866i)7-s + (0.669 + 0.743i)8-s + (0.961 − 0.275i)9-s + (0.913 − 0.406i)11-s + (0.913 + 0.406i)12-s + (−0.719 − 0.694i)13-s + (−0.241 − 0.970i)14-s + (0.438 + 0.898i)16-s + (0.0348 + 0.999i)17-s + 18-s + (−0.615 − 0.788i)21-s + (0.990 − 0.139i)22-s + ⋯ |
L(s) = 1 | + (0.961 + 0.275i)2-s + (0.990 − 0.139i)3-s + (0.848 + 0.529i)4-s + (0.990 + 0.139i)6-s + (−0.5 − 0.866i)7-s + (0.669 + 0.743i)8-s + (0.961 − 0.275i)9-s + (0.913 − 0.406i)11-s + (0.913 + 0.406i)12-s + (−0.719 − 0.694i)13-s + (−0.241 − 0.970i)14-s + (0.438 + 0.898i)16-s + (0.0348 + 0.999i)17-s + 18-s + (−0.615 − 0.788i)21-s + (0.990 − 0.139i)22-s + ⋯ |
Λ(s)=(=(475s/2ΓR(s)L(s)(0.998+0.0576i)Λ(1−s)
Λ(s)=(=(475s/2ΓR(s)L(s)(0.998+0.0576i)Λ(1−s)
Degree: |
1 |
Conductor: |
475
= 52⋅19
|
Sign: |
0.998+0.0576i
|
Analytic conductor: |
2.20589 |
Root analytic conductor: |
2.20589 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(446,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 475, (0: ), 0.998+0.0576i)
|
Particular Values
L(21) |
≈ |
3.367907878+0.09718019789i |
L(21) |
≈ |
3.367907878+0.09718019789i |
L(1) |
≈ |
2.423982070+0.1236179477i |
L(1) |
≈ |
2.423982070+0.1236179477i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
good | 2 | 1+(0.961+0.275i)T |
| 3 | 1+(0.990−0.139i)T |
| 7 | 1+(−0.5−0.866i)T |
| 11 | 1+(0.913−0.406i)T |
| 13 | 1+(−0.719−0.694i)T |
| 17 | 1+(0.0348+0.999i)T |
| 23 | 1+(−0.997+0.0697i)T |
| 29 | 1+(0.0348−0.999i)T |
| 31 | 1+(−0.978+0.207i)T |
| 37 | 1+(−0.809+0.587i)T |
| 41 | 1+(0.438+0.898i)T |
| 43 | 1+(0.766+0.642i)T |
| 47 | 1+(0.0348−0.999i)T |
| 53 | 1+(0.848+0.529i)T |
| 59 | 1+(0.559−0.829i)T |
| 61 | 1+(−0.997+0.0697i)T |
| 67 | 1+(−0.615+0.788i)T |
| 71 | 1+(−0.374+0.927i)T |
| 73 | 1+(−0.719+0.694i)T |
| 79 | 1+(0.990−0.139i)T |
| 83 | 1+(−0.978+0.207i)T |
| 89 | 1+(0.438−0.898i)T |
| 97 | 1+(−0.615−0.788i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−24.072790768017155160653570555319, −22.56813888188848796756936701263, −22.162557501041487601880119980623, −21.33266044600726083632688194464, −20.467024725549314518736724849663, −19.65899769897401996476241960717, −19.14228455710943111759609106748, −18.11000384245336084120078798744, −16.46194028430365155921139623647, −15.86798596967674993642697420560, −14.86530881900598179961201068671, −14.3321833545809605569110432489, −13.55041649502436602273816222469, −12.32595406568481984816101954551, −12.0629424966966436753193447359, −10.64086470145844778608638420694, −9.4839664163828505296362569742, −9.0768137344225304680762542372, −7.45107742161681590155716081404, −6.76118891765643591065910654603, −5.5212339156288306461150601355, −4.43394338303250573806082845471, −3.562057463010790398162709642086, −2.5170306258488624231223449743, −1.77681216165633993428956645270,
1.50477190303074012426238605876, 2.76725176783653293937763245474, 3.7299077290201284913895256069, 4.28686513003252828572843727054, 5.83114400494392154013405186962, 6.77097013528425622030547084618, 7.60966341565346328497411056127, 8.42683725809734121984028259599, 9.74657805982270889787755448502, 10.59970476439943450557553051965, 11.91859784322842887678771674828, 12.80483397698279214428580069937, 13.48575995472114246912154452379, 14.30879019289030139803659086958, 14.90742927671938863629407898930, 15.87680645762233929094289789314, 16.775045955611755651720794007817, 17.60694958336447261148910348045, 19.16678642423014145261233126613, 19.83744202641803317125046026080, 20.29219455710117840274712068688, 21.42580201728133360579735970463, 22.09507863411967904053578647028, 22.99974974447234591900760558972, 23.97949333901658133757340537330