Properties

Label 475.446
Modulus 475475
Conductor 475475
Order 4545
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([54,40]))
 
pari: [g,chi] = znchar(Mod(446,475))
 

Basic properties

Modulus: 475475
Conductor: 475475
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4545
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 475.bc

χ475(6,)\chi_{475}(6,\cdot) χ475(16,)\chi_{475}(16,\cdot) χ475(36,)\chi_{475}(36,\cdot) χ475(61,)\chi_{475}(61,\cdot) χ475(66,)\chi_{475}(66,\cdot) χ475(81,)\chi_{475}(81,\cdot) χ475(111,)\chi_{475}(111,\cdot) χ475(131,)\chi_{475}(131,\cdot) χ475(156,)\chi_{475}(156,\cdot) χ475(161,)\chi_{475}(161,\cdot) χ475(196,)\chi_{475}(196,\cdot) χ475(206,)\chi_{475}(206,\cdot) χ475(256,)\chi_{475}(256,\cdot) χ475(271,)\chi_{475}(271,\cdot) χ475(291,)\chi_{475}(291,\cdot) χ475(321,)\chi_{475}(321,\cdot) χ475(346,)\chi_{475}(346,\cdot) χ475(366,)\chi_{475}(366,\cdot) χ475(386,)\chi_{475}(386,\cdot) χ475(396,)\chi_{475}(396,\cdot) χ475(416,)\chi_{475}(416,\cdot) χ475(441,)\chi_{475}(441,\cdot) χ475(446,)\chi_{475}(446,\cdot) χ475(461,)\chi_{475}(461,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ45)\Q(\zeta_{45})
Fixed field: Number field defined by a degree 45 polynomial

Values on generators

(77,401)(77,401)(e(35),e(49))(e\left(\frac{3}{5}\right),e\left(\frac{4}{9}\right))

First values

aa 1-11122334466778899111112121313
χ475(446,a) \chi_{ 475 }(446, a) 1111e(245)e\left(\frac{2}{45}\right)e(4445)e\left(\frac{44}{45}\right)e(445)e\left(\frac{4}{45}\right)e(145)e\left(\frac{1}{45}\right)e(23)e\left(\frac{2}{3}\right)e(215)e\left(\frac{2}{15}\right)e(4345)e\left(\frac{43}{45}\right)e(1415)e\left(\frac{14}{15}\right)e(115)e\left(\frac{1}{15}\right)e(2845)e\left(\frac{28}{45}\right)
sage: chi.jacobi_sum(n)
 
χ475(446,a)   \chi_{ 475 }(446,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ475(446,))   \tau_{ a }( \chi_{ 475 }(446,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ475(446,),χ475(n,))   J(\chi_{ 475 }(446,·),\chi_{ 475 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ475(446,))  K(a,b,\chi_{ 475 }(446,·)) \; at   a,b=\; a,b = e.g. 1,2