sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([54,40]))
pari:[g,chi] = znchar(Mod(446,475))
Modulus: | 475 | |
Conductor: | 475 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 45 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ475(6,⋅)
χ475(16,⋅)
χ475(36,⋅)
χ475(61,⋅)
χ475(66,⋅)
χ475(81,⋅)
χ475(111,⋅)
χ475(131,⋅)
χ475(156,⋅)
χ475(161,⋅)
χ475(196,⋅)
χ475(206,⋅)
χ475(256,⋅)
χ475(271,⋅)
χ475(291,⋅)
χ475(321,⋅)
χ475(346,⋅)
χ475(366,⋅)
χ475(386,⋅)
χ475(396,⋅)
χ475(416,⋅)
χ475(441,⋅)
χ475(446,⋅)
χ475(461,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(77,401) → (e(53),e(94))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ475(446,a) |
1 | 1 | e(452) | e(4544) | e(454) | e(451) | e(32) | e(152) | e(4543) | e(1514) | e(151) | e(4528) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)