L(s) = 1 | + (0.983 + 0.178i)2-s + (−0.858 − 0.512i)3-s + (0.936 + 0.351i)4-s + (0.393 + 0.919i)5-s + (−0.753 − 0.657i)6-s + (0.858 + 0.512i)8-s + (0.473 + 0.880i)9-s + (0.222 + 0.974i)10-s + (−0.623 − 0.781i)12-s + (−0.983 − 0.178i)13-s + (0.134 − 0.990i)15-s + (0.753 + 0.657i)16-s + (0.963 + 0.266i)17-s + (0.309 + 0.951i)18-s + (−0.309 + 0.951i)19-s + (0.0448 + 0.998i)20-s + ⋯ |
L(s) = 1 | + (0.983 + 0.178i)2-s + (−0.858 − 0.512i)3-s + (0.936 + 0.351i)4-s + (0.393 + 0.919i)5-s + (−0.753 − 0.657i)6-s + (0.858 + 0.512i)8-s + (0.473 + 0.880i)9-s + (0.222 + 0.974i)10-s + (−0.623 − 0.781i)12-s + (−0.983 − 0.178i)13-s + (0.134 − 0.990i)15-s + (0.753 + 0.657i)16-s + (0.963 + 0.266i)17-s + (0.309 + 0.951i)18-s + (−0.309 + 0.951i)19-s + (0.0448 + 0.998i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.446 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.446 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.346547007 + 2.175969583i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.346547007 + 2.175969583i\) |
\(L(1)\) |
\(\approx\) |
\(1.459199820 + 0.5020306605i\) |
\(L(1)\) |
\(\approx\) |
\(1.459199820 + 0.5020306605i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.983 + 0.178i)T \) |
| 3 | \( 1 + (-0.858 - 0.512i)T \) |
| 5 | \( 1 + (0.393 + 0.919i)T \) |
| 13 | \( 1 + (-0.983 - 0.178i)T \) |
| 17 | \( 1 + (0.963 + 0.266i)T \) |
| 19 | \( 1 + (-0.309 + 0.951i)T \) |
| 23 | \( 1 + (0.623 - 0.781i)T \) |
| 29 | \( 1 + (-0.550 + 0.834i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| 37 | \( 1 + (-0.550 + 0.834i)T \) |
| 41 | \( 1 + (-0.858 - 0.512i)T \) |
| 43 | \( 1 + (-0.222 - 0.974i)T \) |
| 47 | \( 1 + (-0.134 - 0.990i)T \) |
| 53 | \( 1 + (-0.963 + 0.266i)T \) |
| 59 | \( 1 + (-0.858 + 0.512i)T \) |
| 61 | \( 1 + (0.963 + 0.266i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (-0.0448 + 0.998i)T \) |
| 73 | \( 1 + (-0.134 + 0.990i)T \) |
| 79 | \( 1 + (-0.809 - 0.587i)T \) |
| 83 | \( 1 + (-0.983 + 0.178i)T \) |
| 89 | \( 1 + (0.900 + 0.433i)T \) |
| 97 | \( 1 + (0.809 + 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.90534026485314879670047180002, −22.055003403957530386067375971943, −21.30873599539533332816620700538, −20.876944746070402831176781703007, −19.86109510592470233452475160051, −18.93992992625732506146761270981, −17.41014914014284884711869004555, −17.00200536581965918699153503966, −16.08429351500396584234380697565, −15.35179939481119417519084876750, −14.42273622660806122527187864441, −13.32454941181608402136902899488, −12.60142182193704400377168738489, −11.830235911004847910157663970866, −11.12289210420463559279816592626, −9.89690128874655167150784010262, −9.433617971085440835782890343139, −7.75411207987424502126416715331, −6.640447247292639930621449294765, −5.681036019268857227128884932103, −4.96545435945845735831261484038, −4.358288067275321828865755332925, −3.07174047078718460610834745831, −1.68007999428465602703969638279, −0.478457195252746224300661860224,
1.490500010442689688255623720457, 2.52440930929421296631847316828, 3.60028888697700240959198989473, 4.987180371793838065101342614760, 5.63573750382822237475658872063, 6.64056368054409970874306781611, 7.15744758245205210749509059745, 8.171789104014698429658386961550, 10.18723685093095084697622364432, 10.53018554756237314315300046298, 11.7136976568836464786005483744, 12.32207904487613617433244153829, 13.14872349951827744806892946134, 14.18198013882022190552919061568, 14.73400944877815174432749146555, 15.76585842548452697231651773499, 16.96816045143528120344739142768, 17.188915313112296644738844755290, 18.586087505693663972146679673644, 19.0642327030143094538719999623, 20.32468918091921370516696022966, 21.40839924517112029064351319302, 21.99752521533069378892060885379, 22.74970210376484046774736221151, 23.25826590423104449689545294542