L(s) = 1 | + (0.983 + 0.178i)2-s + (−0.858 − 0.512i)3-s + (0.936 + 0.351i)4-s + (0.393 + 0.919i)5-s + (−0.753 − 0.657i)6-s + (0.858 + 0.512i)8-s + (0.473 + 0.880i)9-s + (0.222 + 0.974i)10-s + (−0.623 − 0.781i)12-s + (−0.983 − 0.178i)13-s + (0.134 − 0.990i)15-s + (0.753 + 0.657i)16-s + (0.963 + 0.266i)17-s + (0.309 + 0.951i)18-s + (−0.309 + 0.951i)19-s + (0.0448 + 0.998i)20-s + ⋯ |
L(s) = 1 | + (0.983 + 0.178i)2-s + (−0.858 − 0.512i)3-s + (0.936 + 0.351i)4-s + (0.393 + 0.919i)5-s + (−0.753 − 0.657i)6-s + (0.858 + 0.512i)8-s + (0.473 + 0.880i)9-s + (0.222 + 0.974i)10-s + (−0.623 − 0.781i)12-s + (−0.983 − 0.178i)13-s + (0.134 − 0.990i)15-s + (0.753 + 0.657i)16-s + (0.963 + 0.266i)17-s + (0.309 + 0.951i)18-s + (−0.309 + 0.951i)19-s + (0.0448 + 0.998i)20-s + ⋯ |
Λ(s)=(=(539s/2ΓR(s+1)L(s)(−0.446+0.894i)Λ(1−s)
Λ(s)=(=(539s/2ΓR(s+1)L(s)(−0.446+0.894i)Λ(1−s)
Degree: |
1 |
Conductor: |
539
= 72⋅11
|
Sign: |
−0.446+0.894i
|
Analytic conductor: |
57.9235 |
Root analytic conductor: |
57.9235 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ539(405,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 539, (1: ), −0.446+0.894i)
|
Particular Values
L(21) |
≈ |
1.346547007+2.175969583i |
L(21) |
≈ |
1.346547007+2.175969583i |
L(1) |
≈ |
1.459199820+0.5020306605i |
L(1) |
≈ |
1.459199820+0.5020306605i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 11 | 1 |
good | 2 | 1+(0.983+0.178i)T |
| 3 | 1+(−0.858−0.512i)T |
| 5 | 1+(0.393+0.919i)T |
| 13 | 1+(−0.983−0.178i)T |
| 17 | 1+(0.963+0.266i)T |
| 19 | 1+(−0.309+0.951i)T |
| 23 | 1+(0.623−0.781i)T |
| 29 | 1+(−0.550+0.834i)T |
| 31 | 1+(0.809+0.587i)T |
| 37 | 1+(−0.550+0.834i)T |
| 41 | 1+(−0.858−0.512i)T |
| 43 | 1+(−0.222−0.974i)T |
| 47 | 1+(−0.134−0.990i)T |
| 53 | 1+(−0.963+0.266i)T |
| 59 | 1+(−0.858+0.512i)T |
| 61 | 1+(0.963+0.266i)T |
| 67 | 1+T |
| 71 | 1+(−0.0448+0.998i)T |
| 73 | 1+(−0.134+0.990i)T |
| 79 | 1+(−0.809−0.587i)T |
| 83 | 1+(−0.983+0.178i)T |
| 89 | 1+(0.900+0.433i)T |
| 97 | 1+(0.809+0.587i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.90534026485314879670047180002, −22.055003403957530386067375971943, −21.30873599539533332816620700538, −20.876944746070402831176781703007, −19.86109510592470233452475160051, −18.93992992625732506146761270981, −17.41014914014284884711869004555, −17.00200536581965918699153503966, −16.08429351500396584234380697565, −15.35179939481119417519084876750, −14.42273622660806122527187864441, −13.32454941181608402136902899488, −12.60142182193704400377168738489, −11.830235911004847910157663970866, −11.12289210420463559279816592626, −9.89690128874655167150784010262, −9.433617971085440835782890343139, −7.75411207987424502126416715331, −6.640447247292639930621449294765, −5.681036019268857227128884932103, −4.96545435945845735831261484038, −4.358288067275321828865755332925, −3.07174047078718460610834745831, −1.68007999428465602703969638279, −0.478457195252746224300661860224,
1.490500010442689688255623720457, 2.52440930929421296631847316828, 3.60028888697700240959198989473, 4.987180371793838065101342614760, 5.63573750382822237475658872063, 6.64056368054409970874306781611, 7.15744758245205210749509059745, 8.171789104014698429658386961550, 10.18723685093095084697622364432, 10.53018554756237314315300046298, 11.7136976568836464786005483744, 12.32207904487613617433244153829, 13.14872349951827744806892946134, 14.18198013882022190552919061568, 14.73400944877815174432749146555, 15.76585842548452697231651773499, 16.96816045143528120344739142768, 17.188915313112296644738844755290, 18.586087505693663972146679673644, 19.0642327030143094538719999623, 20.32468918091921370516696022966, 21.40839924517112029064351319302, 21.99752521533069378892060885379, 22.74970210376484046774736221151, 23.25826590423104449689545294542