L(s) = 1 | + (−0.890 − 0.454i)2-s + (−0.222 − 0.974i)3-s + (0.586 + 0.809i)4-s + (0.932 − 0.359i)5-s + (−0.244 + 0.969i)6-s + (0.0976 + 0.995i)7-s + (−0.154 − 0.987i)8-s + (−0.900 + 0.433i)9-s + (−0.994 − 0.103i)10-s + (−0.0402 + 0.999i)11-s + (0.658 − 0.752i)12-s + (−0.988 + 0.149i)13-s + (0.365 − 0.930i)14-s + (−0.558 − 0.829i)15-s + (−0.311 + 0.950i)16-s + (0.529 − 0.848i)17-s + ⋯ |
L(s) = 1 | + (−0.890 − 0.454i)2-s + (−0.222 − 0.974i)3-s + (0.586 + 0.809i)4-s + (0.932 − 0.359i)5-s + (−0.244 + 0.969i)6-s + (0.0976 + 0.995i)7-s + (−0.154 − 0.987i)8-s + (−0.900 + 0.433i)9-s + (−0.994 − 0.103i)10-s + (−0.0402 + 0.999i)11-s + (0.658 − 0.752i)12-s + (−0.988 + 0.149i)13-s + (0.365 − 0.930i)14-s + (−0.558 − 0.829i)15-s + (−0.311 + 0.950i)16-s + (0.529 − 0.848i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 547 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.985 + 0.167i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 547 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.985 + 0.167i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7952607846 + 0.06727297201i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7952607846 + 0.06727297201i\) |
\(L(1)\) |
\(\approx\) |
\(0.7085519630 - 0.1540552521i\) |
\(L(1)\) |
\(\approx\) |
\(0.7085519630 - 0.1540552521i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 547 | \( 1 \) |
good | 2 | \( 1 + (-0.890 - 0.454i)T \) |
| 3 | \( 1 + (-0.222 - 0.974i)T \) |
| 5 | \( 1 + (0.932 - 0.359i)T \) |
| 7 | \( 1 + (0.0976 + 0.995i)T \) |
| 11 | \( 1 + (-0.0402 + 0.999i)T \) |
| 13 | \( 1 + (-0.988 + 0.149i)T \) |
| 17 | \( 1 + (0.529 - 0.848i)T \) |
| 19 | \( 1 + (-0.131 + 0.991i)T \) |
| 23 | \( 1 + (-0.999 - 0.0115i)T \) |
| 29 | \( 1 + (0.725 - 0.688i)T \) |
| 31 | \( 1 + (-0.0172 + 0.999i)T \) |
| 37 | \( 1 + (0.905 + 0.423i)T \) |
| 41 | \( 1 + (-0.5 + 0.866i)T \) |
| 43 | \( 1 + (-0.763 + 0.645i)T \) |
| 47 | \( 1 + (0.987 - 0.160i)T \) |
| 53 | \( 1 + (-0.439 + 0.898i)T \) |
| 59 | \( 1 + (0.692 - 0.721i)T \) |
| 61 | \( 1 + (0.605 + 0.795i)T \) |
| 67 | \( 1 + (-0.980 - 0.194i)T \) |
| 71 | \( 1 + (0.166 + 0.986i)T \) |
| 73 | \( 1 + (-0.558 + 0.829i)T \) |
| 79 | \( 1 + (0.940 + 0.338i)T \) |
| 83 | \( 1 + (0.428 + 0.903i)T \) |
| 89 | \( 1 + (0.386 + 0.922i)T \) |
| 97 | \( 1 + (0.756 - 0.654i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.657897041689639937782735244692, −22.312237125909265622184882527737, −21.72243783838231234881411135137, −20.80075416397644584277585190438, −19.96563749524808066149130503236, −19.1943544171457127042007803389, −17.98299694807602283520647440543, −17.26492508398336613293161944495, −16.81203882466075186651304704674, −16.00730059071841661939476039792, −14.879031333660728696893491605977, −14.33046966845576855768047480997, −13.445346082771619816036962639319, −11.78237973245354354304947515523, −10.71243881846618670848930270645, −10.36988799014082871101038179458, −9.587029126742063497786931393666, −8.68382284265615719663886189193, −7.61272417697209810660338746022, −6.49509075785249700490776957388, −5.74254813959298432463602391739, −4.799960789487089196837664600218, −3.40065826295764636375503481607, −2.19156968026769410872139694475, −0.5984012852344834796304731649,
1.29093616844429552896838375101, 2.160981933206195448545108725623, 2.76049777942216612519257161095, 4.78296214648464411778405704466, 5.86144962036720168955479872328, 6.75156715059451950924367358597, 7.76778455032757770100749109209, 8.53868501052158658774591410613, 9.6507467511664968655285075940, 10.09279158518995136272965122383, 11.62407464275624255951530069531, 12.24080547787799686739936236193, 12.67905582862115985012242561108, 13.88077139566065678770144338039, 14.852954125242345622233549768753, 16.20728327209022911782768074947, 16.96361401744871630215347203788, 17.84356040230517954905037258814, 18.19211660529103753221950585774, 19.028486154515767735837417148905, 19.97423258107967017276886393134, 20.69663207979031507990494668103, 21.685029729157742388323372406563, 22.32577161118346032049983719079, 23.50815929017519464880902621096