Properties

Label 1-637-637.543-r0-0-0
Degree 11
Conductor 637637
Sign 0.825+0.565i-0.825 + 0.565i
Analytic cond. 2.958212.95821
Root an. cond. 2.958212.95821
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.988 + 0.149i)2-s + (−0.900 − 0.433i)3-s + (0.955 + 0.294i)4-s + (−0.826 + 0.563i)5-s + (−0.826 − 0.563i)6-s + (0.900 + 0.433i)8-s + (0.623 + 0.781i)9-s + (−0.900 + 0.433i)10-s + (−0.623 + 0.781i)11-s + (−0.733 − 0.680i)12-s + (0.988 − 0.149i)15-s + (0.826 + 0.563i)16-s + (−0.733 − 0.680i)17-s + (0.5 + 0.866i)18-s − 19-s + (−0.955 + 0.294i)20-s + ⋯
L(s)  = 1  + (0.988 + 0.149i)2-s + (−0.900 − 0.433i)3-s + (0.955 + 0.294i)4-s + (−0.826 + 0.563i)5-s + (−0.826 − 0.563i)6-s + (0.900 + 0.433i)8-s + (0.623 + 0.781i)9-s + (−0.900 + 0.433i)10-s + (−0.623 + 0.781i)11-s + (−0.733 − 0.680i)12-s + (0.988 − 0.149i)15-s + (0.826 + 0.563i)16-s + (−0.733 − 0.680i)17-s + (0.5 + 0.866i)18-s − 19-s + (−0.955 + 0.294i)20-s + ⋯

Functional equation

Λ(s)=(637s/2ΓR(s)L(s)=((0.825+0.565i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.825 + 0.565i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(637s/2ΓR(s)L(s)=((0.825+0.565i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.825 + 0.565i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 637637    =    72137^{2} \cdot 13
Sign: 0.825+0.565i-0.825 + 0.565i
Analytic conductor: 2.958212.95821
Root analytic conductor: 2.958212.95821
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ637(543,)\chi_{637} (543, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 637, (0: ), 0.825+0.565i)(1,\ 637,\ (0:\ ),\ -0.825 + 0.565i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.2275660056+0.7349605302i0.2275660056 + 0.7349605302i
L(12)L(\frac12) \approx 0.2275660056+0.7349605302i0.2275660056 + 0.7349605302i
L(1)L(1) \approx 0.9688283406+0.2728423746i0.9688283406 + 0.2728423746i
L(1)L(1) \approx 0.9688283406+0.2728423746i0.9688283406 + 0.2728423746i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
13 1 1
good2 1+(0.988+0.149i)T 1 + (0.988 + 0.149i)T
3 1+(0.9000.433i)T 1 + (-0.900 - 0.433i)T
5 1+(0.826+0.563i)T 1 + (-0.826 + 0.563i)T
11 1+(0.623+0.781i)T 1 + (-0.623 + 0.781i)T
17 1+(0.7330.680i)T 1 + (-0.733 - 0.680i)T
19 1T 1 - T
23 1+(0.733+0.680i)T 1 + (-0.733 + 0.680i)T
29 1+(0.7330.680i)T 1 + (-0.733 - 0.680i)T
31 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
37 1+(0.955+0.294i)T 1 + (-0.955 + 0.294i)T
41 1+(0.826+0.563i)T 1 + (-0.826 + 0.563i)T
43 1+(0.826+0.563i)T 1 + (0.826 + 0.563i)T
47 1+(0.3650.930i)T 1 + (-0.365 - 0.930i)T
53 1+(0.733+0.680i)T 1 + (-0.733 + 0.680i)T
59 1+(0.0747+0.997i)T 1 + (-0.0747 + 0.997i)T
61 1+(0.222+0.974i)T 1 + (-0.222 + 0.974i)T
67 1T 1 - T
71 1+(0.7330.680i)T 1 + (0.733 - 0.680i)T
73 1+(0.365+0.930i)T 1 + (-0.365 + 0.930i)T
79 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
83 1+(0.6230.781i)T 1 + (-0.623 - 0.781i)T
89 1+(0.365+0.930i)T 1 + (-0.365 + 0.930i)T
97 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.50665246457147882044587016438, −21.972299454557030871388576057067, −20.98556450826862133735868469951, −20.52073580823971059781655080347, −19.398512511666385251664997774987, −18.68652589650332056259342901848, −17.27323497376321406155742507701, −16.58488978466764259870896391324, −15.75294173879116014371953257021, −15.36826564976571457533641134262, −14.27672817595170463522183106294, −12.9735377245275131926390074810, −12.60941775550173785355825683532, −11.6108320943731862544628244003, −10.949001297468577455423571578350, −10.31501915099924451698341770549, −8.85560750410744654016936726811, −7.811360401050783053060184677719, −6.63111855593289980874080415125, −5.85081285031021539408777682981, −4.91927367196553917224758962966, −4.18536950987817294961210149374, −3.41025111407173172230247869530, −1.86787439410862805990424341983, −0.2843161493623785490447088148, 1.8065566251827522531756477907, 2.813686294106965157456532883318, 4.153598063803929201501044216977, 4.78650381195635587676922415623, 5.8631598787098170611438189200, 6.81209140718676119361650887201, 7.34915437657258929353667963629, 8.23655144743448351484880299616, 10.1237414951507175553792459734, 10.86875469587771999060350406710, 11.65969526206584974111738763046, 12.25715259283989773626400484150, 13.120850965996272420179836663732, 13.921875995637093741582745256, 15.15336716761796288347887250113, 15.588236918876155310346483693977, 16.42671760355418725671571038107, 17.44114753404890728295834063213, 18.22466518452910369393906460523, 19.23943134250151880393302898457, 19.972705719112424796361324313990, 21.02161211261313747456239607770, 21.91408168521696911221754165019, 22.71531223374225543172984245775, 23.122608776021405324592239479724

Graph of the ZZ-function along the critical line