L(s) = 1 | + (0.988 + 0.149i)2-s + (−0.900 − 0.433i)3-s + (0.955 + 0.294i)4-s + (−0.826 + 0.563i)5-s + (−0.826 − 0.563i)6-s + (0.900 + 0.433i)8-s + (0.623 + 0.781i)9-s + (−0.900 + 0.433i)10-s + (−0.623 + 0.781i)11-s + (−0.733 − 0.680i)12-s + (0.988 − 0.149i)15-s + (0.826 + 0.563i)16-s + (−0.733 − 0.680i)17-s + (0.5 + 0.866i)18-s − 19-s + (−0.955 + 0.294i)20-s + ⋯ |
L(s) = 1 | + (0.988 + 0.149i)2-s + (−0.900 − 0.433i)3-s + (0.955 + 0.294i)4-s + (−0.826 + 0.563i)5-s + (−0.826 − 0.563i)6-s + (0.900 + 0.433i)8-s + (0.623 + 0.781i)9-s + (−0.900 + 0.433i)10-s + (−0.623 + 0.781i)11-s + (−0.733 − 0.680i)12-s + (0.988 − 0.149i)15-s + (0.826 + 0.563i)16-s + (−0.733 − 0.680i)17-s + (0.5 + 0.866i)18-s − 19-s + (−0.955 + 0.294i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.825 + 0.565i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.825 + 0.565i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2275660056 + 0.7349605302i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2275660056 + 0.7349605302i\) |
\(L(1)\) |
\(\approx\) |
\(0.9688283406 + 0.2728423746i\) |
\(L(1)\) |
\(\approx\) |
\(0.9688283406 + 0.2728423746i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.988 + 0.149i)T \) |
| 3 | \( 1 + (-0.900 - 0.433i)T \) |
| 5 | \( 1 + (-0.826 + 0.563i)T \) |
| 11 | \( 1 + (-0.623 + 0.781i)T \) |
| 17 | \( 1 + (-0.733 - 0.680i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (-0.733 + 0.680i)T \) |
| 29 | \( 1 + (-0.733 - 0.680i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.955 + 0.294i)T \) |
| 41 | \( 1 + (-0.826 + 0.563i)T \) |
| 43 | \( 1 + (0.826 + 0.563i)T \) |
| 47 | \( 1 + (-0.365 - 0.930i)T \) |
| 53 | \( 1 + (-0.733 + 0.680i)T \) |
| 59 | \( 1 + (-0.0747 + 0.997i)T \) |
| 61 | \( 1 + (-0.222 + 0.974i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (0.733 - 0.680i)T \) |
| 73 | \( 1 + (-0.365 + 0.930i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.623 - 0.781i)T \) |
| 89 | \( 1 + (-0.365 + 0.930i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.50665246457147882044587016438, −21.972299454557030871388576057067, −20.98556450826862133735868469951, −20.52073580823971059781655080347, −19.398512511666385251664997774987, −18.68652589650332056259342901848, −17.27323497376321406155742507701, −16.58488978466764259870896391324, −15.75294173879116014371953257021, −15.36826564976571457533641134262, −14.27672817595170463522183106294, −12.9735377245275131926390074810, −12.60941775550173785355825683532, −11.6108320943731862544628244003, −10.949001297468577455423571578350, −10.31501915099924451698341770549, −8.85560750410744654016936726811, −7.811360401050783053060184677719, −6.63111855593289980874080415125, −5.85081285031021539408777682981, −4.91927367196553917224758962966, −4.18536950987817294961210149374, −3.41025111407173172230247869530, −1.86787439410862805990424341983, −0.2843161493623785490447088148,
1.8065566251827522531756477907, 2.813686294106965157456532883318, 4.153598063803929201501044216977, 4.78650381195635587676922415623, 5.8631598787098170611438189200, 6.81209140718676119361650887201, 7.34915437657258929353667963629, 8.23655144743448351484880299616, 10.1237414951507175553792459734, 10.86875469587771999060350406710, 11.65969526206584974111738763046, 12.25715259283989773626400484150, 13.120850965996272420179836663732, 13.921875995637093741582745256, 15.15336716761796288347887250113, 15.588236918876155310346483693977, 16.42671760355418725671571038107, 17.44114753404890728295834063213, 18.22466518452910369393906460523, 19.23943134250151880393302898457, 19.972705719112424796361324313990, 21.02161211261313747456239607770, 21.91408168521696911221754165019, 22.71531223374225543172984245775, 23.122608776021405324592239479724