sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(637, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([10,35]))
pari:[g,chi] = znchar(Mod(543,637))
Modulus: | 637 | |
Conductor: | 637 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 42 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ637(88,⋅)
χ637(121,⋅)
χ637(179,⋅)
χ637(212,⋅)
χ637(270,⋅)
χ637(303,⋅)
χ637(394,⋅)
χ637(452,⋅)
χ637(485,⋅)
χ637(543,⋅)
χ637(576,⋅)
χ637(634,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(248,197) → (e(215),e(65))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 |
χ637(543,a) |
1 | 1 | e(421) | e(74) | e(211) | e(4217) | e(4225) | e(141) | e(71) | e(73) | e(145) | e(2113) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)