Properties

Label 637.543
Modulus $637$
Conductor $637$
Order $42$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,35]))
 
pari: [g,chi] = znchar(Mod(543,637))
 

Basic properties

Modulus: \(637\)
Conductor: \(637\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 637.bp

\(\chi_{637}(88,\cdot)\) \(\chi_{637}(121,\cdot)\) \(\chi_{637}(179,\cdot)\) \(\chi_{637}(212,\cdot)\) \(\chi_{637}(270,\cdot)\) \(\chi_{637}(303,\cdot)\) \(\chi_{637}(394,\cdot)\) \(\chi_{637}(452,\cdot)\) \(\chi_{637}(485,\cdot)\) \(\chi_{637}(543,\cdot)\) \(\chi_{637}(576,\cdot)\) \(\chi_{637}(634,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: 42.42.16423600478713504434070778628293678810006717122913176085381268066336462525553883868883157384200587461557.2

Values on generators

\((248,197)\) → \((e\left(\frac{5}{21}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 637 }(543, a) \) \(1\)\(1\)\(e\left(\frac{1}{42}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{1}{21}\right)\)\(e\left(\frac{17}{42}\right)\)\(e\left(\frac{25}{42}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{13}{21}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 637 }(543,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 637 }(543,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 637 }(543,·),\chi_{ 637 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 637 }(543,·)) \;\) at \(\; a,b = \) e.g. 1,2