Properties

Label 637.543
Modulus 637637
Conductor 637637
Order 4242
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,35]))
 
pari: [g,chi] = znchar(Mod(543,637))
 

Basic properties

Modulus: 637637
Conductor: 637637
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4242
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 637.bp

χ637(88,)\chi_{637}(88,\cdot) χ637(121,)\chi_{637}(121,\cdot) χ637(179,)\chi_{637}(179,\cdot) χ637(212,)\chi_{637}(212,\cdot) χ637(270,)\chi_{637}(270,\cdot) χ637(303,)\chi_{637}(303,\cdot) χ637(394,)\chi_{637}(394,\cdot) χ637(452,)\chi_{637}(452,\cdot) χ637(485,)\chi_{637}(485,\cdot) χ637(543,)\chi_{637}(543,\cdot) χ637(576,)\chi_{637}(576,\cdot) χ637(634,)\chi_{637}(634,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ21)\Q(\zeta_{21})
Fixed field: 42.42.16423600478713504434070778628293678810006717122913176085381268066336462525553883868883157384200587461557.2

Values on generators

(248,197)(248,197)(e(521),e(56))(e\left(\frac{5}{21}\right),e\left(\frac{5}{6}\right))

First values

aa 1-11122334455668899101011111212
χ637(543,a) \chi_{ 637 }(543, a) 1111e(142)e\left(\frac{1}{42}\right)e(47)e\left(\frac{4}{7}\right)e(121)e\left(\frac{1}{21}\right)e(1742)e\left(\frac{17}{42}\right)e(2542)e\left(\frac{25}{42}\right)e(114)e\left(\frac{1}{14}\right)e(17)e\left(\frac{1}{7}\right)e(37)e\left(\frac{3}{7}\right)e(514)e\left(\frac{5}{14}\right)e(1321)e\left(\frac{13}{21}\right)
sage: chi.jacobi_sum(n)
 
χ637(543,a)   \chi_{ 637 }(543,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ637(543,))   \tau_{ a }( \chi_{ 637 }(543,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ637(543,),χ637(n,))   J(\chi_{ 637 }(543,·),\chi_{ 637 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ637(543,))  K(a,b,\chi_{ 637 }(543,·)) \; at   a,b=\; a,b = e.g. 1,2