L(s) = 1 | + (−0.642 + 0.766i)3-s + (−0.866 + 0.5i)7-s + (−0.173 − 0.984i)9-s + (−0.5 + 0.866i)11-s + (−0.642 − 0.766i)13-s + (0.984 + 0.173i)17-s + (0.173 − 0.984i)21-s + (0.342 − 0.939i)23-s + (0.866 + 0.5i)27-s + (−0.173 − 0.984i)29-s + (−0.5 − 0.866i)31-s + (−0.342 − 0.939i)33-s − i·37-s + 39-s + (−0.766 − 0.642i)41-s + ⋯ |
L(s) = 1 | + (−0.642 + 0.766i)3-s + (−0.866 + 0.5i)7-s + (−0.173 − 0.984i)9-s + (−0.5 + 0.866i)11-s + (−0.642 − 0.766i)13-s + (0.984 + 0.173i)17-s + (0.173 − 0.984i)21-s + (0.342 − 0.939i)23-s + (0.866 + 0.5i)27-s + (−0.173 − 0.984i)29-s + (−0.5 − 0.866i)31-s + (−0.342 − 0.939i)33-s − i·37-s + 39-s + (−0.766 − 0.642i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.144 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.144 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7050572728 + 0.6094494265i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7050572728 + 0.6094494265i\) |
\(L(1)\) |
\(\approx\) |
\(0.6931103361 + 0.1969789036i\) |
\(L(1)\) |
\(\approx\) |
\(0.6931103361 + 0.1969789036i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.642 + 0.766i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.642 - 0.766i)T \) |
| 17 | \( 1 + (0.984 + 0.173i)T \) |
| 23 | \( 1 + (0.342 - 0.939i)T \) |
| 29 | \( 1 + (-0.173 - 0.984i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 + (-0.766 - 0.642i)T \) |
| 43 | \( 1 + (0.342 + 0.939i)T \) |
| 47 | \( 1 + (0.984 - 0.173i)T \) |
| 53 | \( 1 + (-0.342 + 0.939i)T \) |
| 59 | \( 1 + (0.173 - 0.984i)T \) |
| 61 | \( 1 + (0.939 + 0.342i)T \) |
| 67 | \( 1 + (0.984 - 0.173i)T \) |
| 71 | \( 1 + (-0.939 + 0.342i)T \) |
| 73 | \( 1 + (0.642 - 0.766i)T \) |
| 79 | \( 1 + (-0.766 - 0.642i)T \) |
| 83 | \( 1 + (-0.866 + 0.5i)T \) |
| 89 | \( 1 + (0.766 - 0.642i)T \) |
| 97 | \( 1 + (-0.984 - 0.173i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.00715143128472983606376136963, −21.50410165913331622882384928561, −20.25668469478385691558240175587, −19.285397133716598698035366402309, −18.97450412643259099976581479991, −18.03748346818140111562148906565, −17.050613571800287109129060093426, −16.474226496188999507738911267673, −15.86465687309798473772529979422, −14.384962208009346726123976441659, −13.744394354540920531580903982383, −12.90167773782433141550637788505, −12.23639674823704429009318133649, −11.29907438603118104489348299755, −10.5169935212600565224452851416, −9.597574864680680455839801741852, −8.50415636884229109013056425821, −7.32352043331475066342246215630, −6.958717420693916807684977315164, −5.78311924396985953338203277918, −5.16849115120727584489609864884, −3.73663690744993946731850964611, −2.7650811244468512912135899093, −1.45940890337953272252140861622, −0.3961051783918262991603893880,
0.61636821450009234788703199225, 2.403966318335426569445511815590, 3.31185027261953433915891907732, 4.41699116738224151582095968519, 5.33601453742702006417496241342, 6.02773611149079249305407929545, 7.06074140739109549116875860825, 8.12967487524772643984599276989, 9.3544305819126467453313565065, 9.96235049127422260692518607795, 10.53880101126422050178123154105, 11.7602069114106258593131549518, 12.45167626512931117757227803013, 13.06891492796902351219936621296, 14.5486171268066207308080809205, 15.2326862078895134575819858050, 15.79291414029997213711893382055, 16.800586038723304611840262628352, 17.30283084689924671593180346603, 18.37591727984166005954938931544, 19.033566252432319826723607693765, 20.270513244710874082406794222162, 20.72496511448246537766759477337, 21.77396255369341927171547313163, 22.43715874612859759405615120927