Properties

Label 760.507
Modulus 760760
Conductor 760760
Order 3636
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(760, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,18,9,10]))
 
pari: [g,chi] = znchar(Mod(507,760))
 

Basic properties

Modulus: 760760
Conductor: 760760
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3636
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 760.cn

χ760(3,)\chi_{760}(3,\cdot) χ760(67,)\chi_{760}(67,\cdot) χ760(147,)\chi_{760}(147,\cdot) χ760(203,)\chi_{760}(203,\cdot) χ760(243,)\chi_{760}(243,\cdot) χ760(307,)\chi_{760}(307,\cdot) χ760(363,)\chi_{760}(363,\cdot) χ760(507,)\chi_{760}(507,\cdot) χ760(523,)\chi_{760}(523,\cdot) χ760(547,)\chi_{760}(547,\cdot) χ760(603,)\chi_{760}(603,\cdot) χ760(667,)\chi_{760}(667,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ36)\Q(\zeta_{36})
Fixed field: 36.0.4031181156993454136731178943694064571490658196389888000000000000000000000000000.1

Values on generators

(191,381,457,401)(191,381,457,401)(1,1,i,e(518))(-1,-1,i,e\left(\frac{5}{18}\right))

First values

aa 1-1113377991111131317172121232327272929
χ760(507,a) \chi_{ 760 }(507, a) 1-111e(1336)e\left(\frac{13}{36}\right)e(512)e\left(\frac{5}{12}\right)e(1318)e\left(\frac{13}{18}\right)e(13)e\left(\frac{1}{3}\right)e(2336)e\left(\frac{23}{36}\right)e(136)e\left(\frac{1}{36}\right)e(79)e\left(\frac{7}{9}\right)e(2936)e\left(\frac{29}{36}\right)e(112)e\left(\frac{1}{12}\right)e(1318)e\left(\frac{13}{18}\right)
sage: chi.jacobi_sum(n)
 
χ760(507,a)   \chi_{ 760 }(507,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ760(507,))   \tau_{ a }( \chi_{ 760 }(507,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ760(507,),χ760(n,))   J(\chi_{ 760 }(507,·),\chi_{ 760 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ760(507,))  K(a,b,\chi_{ 760 }(507,·)) \; at   a,b=\; a,b = e.g. 1,2