L(s) = 1 | + (0.988 − 0.149i)3-s + (0.826 + 0.563i)5-s + (0.955 − 0.294i)9-s + (−0.955 − 0.294i)11-s + (−0.222 − 0.974i)13-s + (0.900 + 0.433i)15-s + (−0.5 + 0.866i)17-s + (0.988 + 0.149i)19-s + (−0.0747 − 0.997i)23-s + (0.365 + 0.930i)25-s + (0.900 − 0.433i)27-s + (−0.0747 + 0.997i)31-s + (−0.988 − 0.149i)33-s + (0.955 − 0.294i)37-s + (−0.365 − 0.930i)39-s + ⋯ |
L(s) = 1 | + (0.988 − 0.149i)3-s + (0.826 + 0.563i)5-s + (0.955 − 0.294i)9-s + (−0.955 − 0.294i)11-s + (−0.222 − 0.974i)13-s + (0.900 + 0.433i)15-s + (−0.5 + 0.866i)17-s + (0.988 + 0.149i)19-s + (−0.0747 − 0.997i)23-s + (0.365 + 0.930i)25-s + (0.900 − 0.433i)27-s + (−0.0747 + 0.997i)31-s + (−0.988 − 0.149i)33-s + (0.955 − 0.294i)37-s + (−0.365 − 0.930i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.986 - 0.164i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.986 - 0.164i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.815686899 - 0.3153273343i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.815686899 - 0.3153273343i\) |
\(L(1)\) |
\(\approx\) |
\(1.782927932 - 0.04002879594i\) |
\(L(1)\) |
\(\approx\) |
\(1.782927932 - 0.04002879594i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 29 | \( 1 \) |
good | 3 | \( 1 + (0.988 - 0.149i)T \) |
| 5 | \( 1 + (0.826 + 0.563i)T \) |
| 11 | \( 1 + (-0.955 - 0.294i)T \) |
| 13 | \( 1 + (-0.222 - 0.974i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (0.988 + 0.149i)T \) |
| 23 | \( 1 + (-0.0747 - 0.997i)T \) |
| 31 | \( 1 + (-0.0747 + 0.997i)T \) |
| 37 | \( 1 + (0.955 - 0.294i)T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + (0.900 + 0.433i)T \) |
| 47 | \( 1 + (0.733 - 0.680i)T \) |
| 53 | \( 1 + (0.0747 - 0.997i)T \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + (0.365 - 0.930i)T \) |
| 67 | \( 1 + (0.733 + 0.680i)T \) |
| 71 | \( 1 + (0.222 + 0.974i)T \) |
| 73 | \( 1 + (0.826 - 0.563i)T \) |
| 79 | \( 1 + (-0.955 + 0.294i)T \) |
| 83 | \( 1 + (-0.623 + 0.781i)T \) |
| 89 | \( 1 + (0.826 + 0.563i)T \) |
| 97 | \( 1 + (0.623 - 0.781i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.7387219794955739393808024947, −21.18601799687991920446585886416, −20.44991700867037090679966712100, −19.91172242607643535441366284896, −18.79320883193713631480253630960, −18.17059546342553725385722800948, −17.26847783508162608654983105284, −16.17338460506922734877666349271, −15.70844733862399296230265816842, −14.62740033691540477738503132109, −13.72982650449731059940004767991, −13.41358827664182169706726992585, −12.45533966432090341767458464103, −11.365871682260746452734588877341, −10.19667536288936351957369078509, −9.37556165630588193241867913572, −9.096408879223288378452666017931, −7.78996201536556454016409996189, −7.22036192653906767317845799424, −5.88249940056625273507635658660, −4.9084214948517474945848973165, −4.14717901091015222398201750191, −2.736756738552064314517301882579, −2.17018925762037607401353736480, −0.98419728198034136497471761204,
0.86982887477759512086616925398, 2.20473805920493138660151046512, 2.78039681827465718573036306141, 3.71713355073687006352515075913, 5.06376862100399764719012166134, 5.99177515125734637789089421564, 6.99941827740043358557931734332, 7.8775330301674720830300889699, 8.61169445087740026246546922368, 9.677187074467008730047241095073, 10.310656538269740925199776738796, 11.055062260200080920372071406592, 12.70788036310199459952421778677, 12.96673812690162136892689966961, 14.02521101496631233450015357568, 14.53350407519906265048472199098, 15.43007214814175853281249686776, 16.15131418682758901815332834964, 17.47335062510647449978649974985, 18.12077261284394651373789695864, 18.71098729032911686539177183450, 19.68219869570045226576762235206, 20.41874532690102577270195298059, 21.16771277883806982354203177202, 21.85862127876517959362285551718