L(s) = 1 | + (0.988 − 0.149i)3-s + (0.826 + 0.563i)5-s + (0.955 − 0.294i)9-s + (−0.955 − 0.294i)11-s + (−0.222 − 0.974i)13-s + (0.900 + 0.433i)15-s + (−0.5 + 0.866i)17-s + (0.988 + 0.149i)19-s + (−0.0747 − 0.997i)23-s + (0.365 + 0.930i)25-s + (0.900 − 0.433i)27-s + (−0.0747 + 0.997i)31-s + (−0.988 − 0.149i)33-s + (0.955 − 0.294i)37-s + (−0.365 − 0.930i)39-s + ⋯ |
L(s) = 1 | + (0.988 − 0.149i)3-s + (0.826 + 0.563i)5-s + (0.955 − 0.294i)9-s + (−0.955 − 0.294i)11-s + (−0.222 − 0.974i)13-s + (0.900 + 0.433i)15-s + (−0.5 + 0.866i)17-s + (0.988 + 0.149i)19-s + (−0.0747 − 0.997i)23-s + (0.365 + 0.930i)25-s + (0.900 − 0.433i)27-s + (−0.0747 + 0.997i)31-s + (−0.988 − 0.149i)33-s + (0.955 − 0.294i)37-s + (−0.365 − 0.930i)39-s + ⋯ |
Λ(s)=(=(812s/2ΓR(s+1)L(s)(0.986−0.164i)Λ(1−s)
Λ(s)=(=(812s/2ΓR(s+1)L(s)(0.986−0.164i)Λ(1−s)
Degree: |
1 |
Conductor: |
812
= 22⋅7⋅29
|
Sign: |
0.986−0.164i
|
Analytic conductor: |
87.2615 |
Root analytic conductor: |
87.2615 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ812(471,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 812, (1: ), 0.986−0.164i)
|
Particular Values
L(21) |
≈ |
3.815686899−0.3153273343i |
L(21) |
≈ |
3.815686899−0.3153273343i |
L(1) |
≈ |
1.782927932−0.04002879594i |
L(1) |
≈ |
1.782927932−0.04002879594i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 29 | 1 |
good | 3 | 1+(0.988−0.149i)T |
| 5 | 1+(0.826+0.563i)T |
| 11 | 1+(−0.955−0.294i)T |
| 13 | 1+(−0.222−0.974i)T |
| 17 | 1+(−0.5+0.866i)T |
| 19 | 1+(0.988+0.149i)T |
| 23 | 1+(−0.0747−0.997i)T |
| 31 | 1+(−0.0747+0.997i)T |
| 37 | 1+(0.955−0.294i)T |
| 41 | 1+T |
| 43 | 1+(0.900+0.433i)T |
| 47 | 1+(0.733−0.680i)T |
| 53 | 1+(0.0747−0.997i)T |
| 59 | 1+(0.5−0.866i)T |
| 61 | 1+(0.365−0.930i)T |
| 67 | 1+(0.733+0.680i)T |
| 71 | 1+(0.222+0.974i)T |
| 73 | 1+(0.826−0.563i)T |
| 79 | 1+(−0.955+0.294i)T |
| 83 | 1+(−0.623+0.781i)T |
| 89 | 1+(0.826+0.563i)T |
| 97 | 1+(0.623−0.781i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.7387219794955739393808024947, −21.18601799687991920446585886416, −20.44991700867037090679966712100, −19.91172242607643535441366284896, −18.79320883193713631480253630960, −18.17059546342553725385722800948, −17.26847783508162608654983105284, −16.17338460506922734877666349271, −15.70844733862399296230265816842, −14.62740033691540477738503132109, −13.72982650449731059940004767991, −13.41358827664182169706726992585, −12.45533966432090341767458464103, −11.365871682260746452734588877341, −10.19667536288936351957369078509, −9.37556165630588193241867913572, −9.096408879223288378452666017931, −7.78996201536556454016409996189, −7.22036192653906767317845799424, −5.88249940056625273507635658660, −4.9084214948517474945848973165, −4.14717901091015222398201750191, −2.736756738552064314517301882579, −2.17018925762037607401353736480, −0.98419728198034136497471761204,
0.86982887477759512086616925398, 2.20473805920493138660151046512, 2.78039681827465718573036306141, 3.71713355073687006352515075913, 5.06376862100399764719012166134, 5.99177515125734637789089421564, 6.99941827740043358557931734332, 7.8775330301674720830300889699, 8.61169445087740026246546922368, 9.677187074467008730047241095073, 10.310656538269740925199776738796, 11.055062260200080920372071406592, 12.70788036310199459952421778677, 12.96673812690162136892689966961, 14.02521101496631233450015357568, 14.53350407519906265048472199098, 15.43007214814175853281249686776, 16.15131418682758901815332834964, 17.47335062510647449978649974985, 18.12077261284394651373789695864, 18.71098729032911686539177183450, 19.68219869570045226576762235206, 20.41874532690102577270195298059, 21.16771277883806982354203177202, 21.85862127876517959362285551718