Properties

Label 812.471
Modulus 812812
Conductor 812812
Order 4242
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(812, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,14,18]))
 
pari: [g,chi] = znchar(Mod(471,812))
 

Basic properties

Modulus: 812812
Conductor: 812812
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4242
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 812.bn

χ812(23,)\chi_{812}(23,\cdot) χ812(107,)\chi_{812}(107,\cdot) χ812(123,)\chi_{812}(123,\cdot) χ812(219,)\chi_{812}(219,\cdot) χ812(431,)\chi_{812}(431,\cdot) χ812(459,)\chi_{812}(459,\cdot) χ812(471,)\chi_{812}(471,\cdot) χ812(487,)\chi_{812}(487,\cdot) χ812(571,)\chi_{812}(571,\cdot) χ812(683,)\chi_{812}(683,\cdot) χ812(779,)\chi_{812}(779,\cdot) χ812(807,)\chi_{812}(807,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ21)\Q(\zeta_{21})
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

(407,465,785)(407,465,785)(1,e(13),e(37))(-1,e\left(\frac{1}{3}\right),e\left(\frac{3}{7}\right))

First values

aa 1-1113355991111131315151717191923232525
χ812(471,a) \chi_{ 812 }(471, a) 1-111e(4142)e\left(\frac{41}{42}\right)e(221)e\left(\frac{2}{21}\right)e(2021)e\left(\frac{20}{21}\right)e(2342)e\left(\frac{23}{42}\right)e(57)e\left(\frac{5}{7}\right)e(114)e\left(\frac{1}{14}\right)e(13)e\left(\frac{1}{3}\right)e(142)e\left(\frac{1}{42}\right)e(3142)e\left(\frac{31}{42}\right)e(421)e\left(\frac{4}{21}\right)
sage: chi.jacobi_sum(n)
 
χ812(471,a)   \chi_{ 812 }(471,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ812(471,))   \tau_{ a }( \chi_{ 812 }(471,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ812(471,),χ812(n,))   J(\chi_{ 812 }(471,·),\chi_{ 812 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ812(471,))  K(a,b,\chi_{ 812 }(471,·)) \; at   a,b=\; a,b = e.g. 1,2