L(s) = 1 | + (−0.998 − 0.0523i)2-s + (−0.996 + 0.0784i)3-s + (0.994 + 0.104i)4-s + (−0.688 + 0.725i)5-s + (0.999 − 0.0261i)6-s + (−0.566 + 0.824i)7-s + (−0.987 − 0.156i)8-s + (0.987 − 0.156i)9-s + (0.725 − 0.688i)10-s + (−0.923 − 0.382i)11-s + (−0.999 − 0.0261i)12-s + (0.866 + 0.5i)13-s + (0.608 − 0.793i)14-s + (0.629 − 0.777i)15-s + (0.978 + 0.207i)16-s + ⋯ |
L(s) = 1 | + (−0.998 − 0.0523i)2-s + (−0.996 + 0.0784i)3-s + (0.994 + 0.104i)4-s + (−0.688 + 0.725i)5-s + (0.999 − 0.0261i)6-s + (−0.566 + 0.824i)7-s + (−0.987 − 0.156i)8-s + (0.987 − 0.156i)9-s + (0.725 − 0.688i)10-s + (−0.923 − 0.382i)11-s + (−0.999 − 0.0261i)12-s + (0.866 + 0.5i)13-s + (0.608 − 0.793i)14-s + (0.629 − 0.777i)15-s + (0.978 + 0.207i)16-s + ⋯ |
Λ(s)=(=(1037s/2ΓR(s)L(s)(0.862−0.505i)Λ(1−s)
Λ(s)=(=(1037s/2ΓR(s)L(s)(0.862−0.505i)Λ(1−s)
Degree: |
1 |
Conductor: |
1037
= 17⋅61
|
Sign: |
0.862−0.505i
|
Analytic conductor: |
4.81580 |
Root analytic conductor: |
4.81580 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1037(112,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1037, (0: ), 0.862−0.505i)
|
Particular Values
L(21) |
≈ |
0.2470004530−0.06706083276i |
L(21) |
≈ |
0.2470004530−0.06706083276i |
L(1) |
≈ |
0.3687522798+0.06607070130i |
L(1) |
≈ |
0.3687522798+0.06607070130i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 17 | 1 |
| 61 | 1 |
good | 2 | 1+(−0.998−0.0523i)T |
| 3 | 1+(−0.996+0.0784i)T |
| 5 | 1+(−0.688+0.725i)T |
| 7 | 1+(−0.566+0.824i)T |
| 11 | 1+(−0.923−0.382i)T |
| 13 | 1+(0.866+0.5i)T |
| 19 | 1+(−0.838−0.544i)T |
| 23 | 1+(0.522+0.852i)T |
| 29 | 1+(−0.608+0.793i)T |
| 31 | 1+(0.333−0.942i)T |
| 37 | 1+(−0.649−0.760i)T |
| 41 | 1+(0.0784−0.996i)T |
| 43 | 1+(−0.629+0.777i)T |
| 47 | 1+(−0.866+0.5i)T |
| 53 | 1+(0.156−0.987i)T |
| 59 | 1+(−0.0523+0.998i)T |
| 67 | 1+(−0.406−0.913i)T |
| 71 | 1+(−0.999−0.0261i)T |
| 73 | 1+(0.999+0.0261i)T |
| 79 | 1+(0.284−0.958i)T |
| 83 | 1+(−0.0523+0.998i)T |
| 89 | 1+(−0.309+0.951i)T |
| 97 | 1+(0.333−0.942i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.31126398807830062840412994894, −20.67545662067805817723454217876, −20.079728031789930152165915629301, −19.03289493119240834334446894165, −18.578359137825569715055967766663, −17.58261944228267770509660022255, −16.92222172080595461740778187324, −16.34734345843444976615452307452, −15.72879811980793533441660080122, −15.05457998742821483923075682595, −13.32282535851652915824590289705, −12.74499098664814059800139743951, −11.99053438451260895446166921465, −11.01015229221313570880779784484, −10.4682105371260751529323992102, −9.803069825832721454387144174490, −8.54601728350489470778162467, −7.909736898901739267830693703677, −7.02712747662318637111206637832, −6.29771425097212034400453185933, −5.28288589132837257825483922753, −4.287038193268642836880969880156, −3.20425216316921207114698850101, −1.64404163828096781815790735325, −0.68323651491672661276327847389,
0.28071766763155849603283873793, 1.82387965406517806981336923027, 2.93169913896629137975732790532, 3.827504583343122640575962979849, 5.30988379926281800205591406168, 6.17611851453107809561907280321, 6.79423006669419753578875330268, 7.65260036716748420064493860749, 8.636881232796431924143890617928, 9.48093447559694357423898818286, 10.48700979451076050249329246150, 11.07531627802898748470526211593, 11.5795924777520127063431262351, 12.4908646994228325407160102680, 13.301941923670083231287400247827, 14.96041166245723695415391291028, 15.51196196303814541738266064592, 16.09277310276087700387236838525, 16.72325634761669083272585363315, 17.91496185146638626599012474962, 18.27466396684358355356506347225, 19.11928551631994571766765633321, 19.38203623437922971543765199190, 20.8981411959712929331595364906, 21.390657142356820802991993036666