L(s) = 1 | + (−0.156 − 0.987i)2-s + (−0.522 − 0.852i)3-s + (−0.951 + 0.309i)4-s + (−0.996 − 0.0784i)5-s + (−0.760 + 0.649i)6-s + (0.522 − 0.852i)7-s + (0.453 + 0.891i)8-s + (−0.453 + 0.891i)9-s + (0.0784 + 0.996i)10-s + (−0.382 − 0.923i)11-s + (0.760 + 0.649i)12-s + i·13-s + (−0.923 − 0.382i)14-s + (0.453 + 0.891i)15-s + (0.809 − 0.587i)16-s + ⋯ |
L(s) = 1 | + (−0.156 − 0.987i)2-s + (−0.522 − 0.852i)3-s + (−0.951 + 0.309i)4-s + (−0.996 − 0.0784i)5-s + (−0.760 + 0.649i)6-s + (0.522 − 0.852i)7-s + (0.453 + 0.891i)8-s + (−0.453 + 0.891i)9-s + (0.0784 + 0.996i)10-s + (−0.382 − 0.923i)11-s + (0.760 + 0.649i)12-s + i·13-s + (−0.923 − 0.382i)14-s + (0.453 + 0.891i)15-s + (0.809 − 0.587i)16-s + ⋯ |
Λ(s)=(=(1037s/2ΓR(s)L(s)(−0.932−0.360i)Λ(1−s)
Λ(s)=(=(1037s/2ΓR(s)L(s)(−0.932−0.360i)Λ(1−s)
Degree: |
1 |
Conductor: |
1037
= 17⋅61
|
Sign: |
−0.932−0.360i
|
Analytic conductor: |
4.81580 |
Root analytic conductor: |
4.81580 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1037(150,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1037, (0: ), −0.932−0.360i)
|
Particular Values
L(21) |
≈ |
0.1530677705−0.8214973698i |
L(21) |
≈ |
0.1530677705−0.8214973698i |
L(1) |
≈ |
0.4719931686−0.5284170073i |
L(1) |
≈ |
0.4719931686−0.5284170073i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 17 | 1 |
| 61 | 1 |
good | 2 | 1+(−0.156−0.987i)T |
| 3 | 1+(−0.522−0.852i)T |
| 5 | 1+(−0.996−0.0784i)T |
| 7 | 1+(0.522−0.852i)T |
| 11 | 1+(−0.382−0.923i)T |
| 13 | 1+iT |
| 19 | 1+(0.987−0.156i)T |
| 23 | 1+(0.760−0.649i)T |
| 29 | 1+(0.923+0.382i)T |
| 31 | 1+(0.233+0.972i)T |
| 37 | 1+(−0.233−0.972i)T |
| 41 | 1+(0.852+0.522i)T |
| 43 | 1+(−0.453−0.891i)T |
| 47 | 1+iT |
| 53 | 1+(0.891−0.453i)T |
| 59 | 1+(0.987−0.156i)T |
| 67 | 1+(−0.951+0.309i)T |
| 71 | 1+(0.760+0.649i)T |
| 73 | 1+(−0.760−0.649i)T |
| 79 | 1+(0.996−0.0784i)T |
| 83 | 1+(0.987−0.156i)T |
| 89 | 1+(0.809+0.587i)T |
| 97 | 1+(0.233+0.972i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.26862764929330378522994801358, −21.23196462664769700471638639657, −20.4148516355519187697774503219, −19.50453357780224514213607988826, −18.42098754919725348508838563474, −17.89849182653043962386773257384, −17.18291635260628515547974463958, −16.20372984641137239892220889746, −15.467482124736460751598172727564, −15.22635419015560316681329791579, −14.58357866643902886337039618045, −13.2632654970011922881217668178, −12.226274788908676939656812183194, −11.63154903273800464022519764819, −10.55514921023072439313532432501, −9.800579185236006783974289775748, −8.92366563503038550577394829920, −8.05136930721501348514628871477, −7.42296195906537877197795213573, −6.292757307728278302584333640094, −5.261366454407269770916939435048, −4.91059390600793415014070354069, −3.912389189844740468765161962947, −2.87456883693361406846436245251, −0.89272911749898654170547959496,
0.63769684759425336005578469391, 1.28671823986827524200920432831, 2.61203714421052105948077633826, 3.5762253775004045069791996864, 4.58931868001169445532923954282, 5.26055981090609087387706169013, 6.750403935420778139571691312075, 7.50365507097528476887159832147, 8.278319274673209124913015423459, 8.97365114263555143984159962612, 10.47559621693869222793042614243, 10.98228006335082357560835144888, 11.636650583664812562160655949073, 12.23480996880150815400170356324, 13.16323390647354483220108650402, 13.905998197881607405291724609462, 14.48396789889850662161239127138, 16.21392694929473899660294740840, 16.52371641216729207777104155681, 17.622997028210593885844330426887, 18.19477599467491574310155991553, 19.176372412619710873652283721064, 19.38710416883169164123468397795, 20.321642817802683666820980307197, 21.09963635014182478176790177171