L(s) = 1 | + (−0.743 − 0.669i)2-s + (0.453 − 0.891i)3-s + (0.104 + 0.994i)4-s + (0.358 + 0.933i)5-s + (−0.933 + 0.358i)6-s + (−0.544 + 0.838i)7-s + (0.587 − 0.809i)8-s + (−0.587 − 0.809i)9-s + (0.358 − 0.933i)10-s + (−0.707 + 0.707i)11-s + (0.933 + 0.358i)12-s + (0.5 + 0.866i)13-s + (0.965 − 0.258i)14-s + (0.994 + 0.104i)15-s + (−0.978 + 0.207i)16-s + ⋯ |
L(s) = 1 | + (−0.743 − 0.669i)2-s + (0.453 − 0.891i)3-s + (0.104 + 0.994i)4-s + (0.358 + 0.933i)5-s + (−0.933 + 0.358i)6-s + (−0.544 + 0.838i)7-s + (0.587 − 0.809i)8-s + (−0.587 − 0.809i)9-s + (0.358 − 0.933i)10-s + (−0.707 + 0.707i)11-s + (0.933 + 0.358i)12-s + (0.5 + 0.866i)13-s + (0.965 − 0.258i)14-s + (0.994 + 0.104i)15-s + (−0.978 + 0.207i)16-s + ⋯ |
Λ(s)=(=(1037s/2ΓR(s)L(s)(−0.463+0.885i)Λ(1−s)
Λ(s)=(=(1037s/2ΓR(s)L(s)(−0.463+0.885i)Λ(1−s)
Degree: |
1 |
Conductor: |
1037
= 17⋅61
|
Sign: |
−0.463+0.885i
|
Analytic conductor: |
4.81580 |
Root analytic conductor: |
4.81580 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1037(178,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1037, (0: ), −0.463+0.885i)
|
Particular Values
L(21) |
≈ |
0.1929498693+0.3188608526i |
L(21) |
≈ |
0.1929498693+0.3188608526i |
L(1) |
≈ |
0.6617340387−0.08138380446i |
L(1) |
≈ |
0.6617340387−0.08138380446i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 17 | 1 |
| 61 | 1 |
good | 2 | 1+(−0.743−0.669i)T |
| 3 | 1+(0.453−0.891i)T |
| 5 | 1+(0.358+0.933i)T |
| 7 | 1+(−0.544+0.838i)T |
| 11 | 1+(−0.707+0.707i)T |
| 13 | 1+(0.5+0.866i)T |
| 19 | 1+(−0.207+0.978i)T |
| 23 | 1+(0.156−0.987i)T |
| 29 | 1+(−0.965+0.258i)T |
| 31 | 1+(0.0523−0.998i)T |
| 37 | 1+(−0.891+0.453i)T |
| 41 | 1+(−0.453−0.891i)T |
| 43 | 1+(−0.994−0.104i)T |
| 47 | 1+(0.5−0.866i)T |
| 53 | 1+(−0.587+0.809i)T |
| 59 | 1+(0.743+0.669i)T |
| 67 | 1+(0.913+0.406i)T |
| 71 | 1+(−0.933−0.358i)T |
| 73 | 1+(0.933+0.358i)T |
| 79 | 1+(−0.629−0.777i)T |
| 83 | 1+(−0.743−0.669i)T |
| 89 | 1+(−0.309−0.951i)T |
| 97 | 1+(−0.0523+0.998i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.05888749407683628411750742221, −20.41512378009888699871047774521, −19.77497662306802412458530519178, −19.16237033076929865770164976509, −17.92015998880396502059350778904, −17.20094214146581651764473087692, −16.569735292928268167077270413805, −15.79266759700112799582989389065, −15.51880624386779391545246705329, −14.26973253583922763820421413975, −13.475888728386585252649892054947, −13.05146817445301768169676343906, −11.25969690814159202425102756557, −10.638428081391335997118498403143, −9.84911193986797816318301704251, −9.236839253955477569899290113, −8.38425677775368196609184422034, −7.84165595061321264635075951264, −6.65411457258388133814072356418, −5.48476443775406430354573459656, −5.10078275123544718901768892242, −3.88501745077854441583448636122, −2.84946779478696328330441241493, −1.42326680738608257630630353185, −0.1797485169368670547954493957,
1.74616363444388752109212541892, 2.20803407027907318090944593475, 3.042773067423498187414047656733, 3.919491307460106990837800770584, 5.685599450574850681873090650791, 6.6461105597868754551862773298, 7.19348108364388346555261343438, 8.203182776476614535245003441288, 8.940219200356157507973502428345, 9.77126205021960842394836617117, 10.51042117311408633925670736246, 11.5653263162805185113163878544, 12.21953611938080769322251594340, 12.99479645848003586416293694630, 13.682765023640247853012004909605, 14.72182039094880487568093252143, 15.46633083459516160914949607810, 16.5957306402800566490192400173, 17.45534500414973373077577340371, 18.42413274673918891705630926490, 18.71138192074561436576585711406, 19.005639715788747937142929969920, 20.26924605731727046463511982580, 20.79616159143651209311950678236, 21.669444415408370627471851453287