L(s) = 1 | + (−0.848 + 0.529i)2-s + (0.559 − 0.829i)3-s + (0.438 − 0.898i)4-s + (−0.0348 + 0.999i)6-s + (−0.104 + 0.994i)7-s + (0.104 + 0.994i)8-s + (−0.374 − 0.927i)9-s + (−0.5 − 0.866i)12-s + (0.615 − 0.788i)13-s + (−0.438 − 0.898i)14-s + (−0.615 − 0.788i)16-s + (−0.374 + 0.927i)17-s + (0.809 + 0.587i)18-s + (0.766 + 0.642i)21-s + (−0.173 − 0.984i)23-s + (0.882 + 0.469i)24-s + ⋯ |
L(s) = 1 | + (−0.848 + 0.529i)2-s + (0.559 − 0.829i)3-s + (0.438 − 0.898i)4-s + (−0.0348 + 0.999i)6-s + (−0.104 + 0.994i)7-s + (0.104 + 0.994i)8-s + (−0.374 − 0.927i)9-s + (−0.5 − 0.866i)12-s + (0.615 − 0.788i)13-s + (−0.438 − 0.898i)14-s + (−0.615 − 0.788i)16-s + (−0.374 + 0.927i)17-s + (0.809 + 0.587i)18-s + (0.766 + 0.642i)21-s + (−0.173 − 0.984i)23-s + (0.882 + 0.469i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.486 - 0.873i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.486 - 0.873i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9102632720 - 0.5352751883i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9102632720 - 0.5352751883i\) |
\(L(1)\) |
\(\approx\) |
\(0.8412095071 - 0.1146407290i\) |
\(L(1)\) |
\(\approx\) |
\(0.8412095071 - 0.1146407290i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (-0.848 + 0.529i)T \) |
| 3 | \( 1 + (0.559 - 0.829i)T \) |
| 7 | \( 1 + (-0.104 + 0.994i)T \) |
| 13 | \( 1 + (0.615 - 0.788i)T \) |
| 17 | \( 1 + (-0.374 + 0.927i)T \) |
| 23 | \( 1 + (-0.173 - 0.984i)T \) |
| 29 | \( 1 + (-0.997 + 0.0697i)T \) |
| 31 | \( 1 + (0.978 - 0.207i)T \) |
| 37 | \( 1 + (-0.809 - 0.587i)T \) |
| 41 | \( 1 + (0.559 - 0.829i)T \) |
| 43 | \( 1 + (0.173 - 0.984i)T \) |
| 47 | \( 1 + (0.241 - 0.970i)T \) |
| 53 | \( 1 + (0.990 + 0.139i)T \) |
| 59 | \( 1 + (0.241 + 0.970i)T \) |
| 61 | \( 1 + (0.882 - 0.469i)T \) |
| 67 | \( 1 + (0.766 - 0.642i)T \) |
| 71 | \( 1 + (-0.990 + 0.139i)T \) |
| 73 | \( 1 + (0.961 + 0.275i)T \) |
| 79 | \( 1 + (0.0348 + 0.999i)T \) |
| 83 | \( 1 + (0.669 - 0.743i)T \) |
| 89 | \( 1 + (0.939 + 0.342i)T \) |
| 97 | \( 1 + (0.848 - 0.529i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.27469315073590587512543520113, −20.813793180847433741959412386612, −20.14322405676949744533950210181, −19.456165077636135972040785161967, −18.78880602858268519379903494374, −17.704426452232606705043526108205, −17.02160281258595345544154922506, −16.12621311186226406044583542159, −15.84559770658397881199715918248, −14.59229269298693732826978924691, −13.64298676990224521254123024719, −13.184495808347617981569262633404, −11.685797809620136563919118181072, −11.190197994168361667262454503972, −10.34929256202464817707744008168, −9.59887756354999193791685072068, −9.06008809644323132536663597885, −8.0636652573744594636221721014, −7.36455453831817371487718047339, −6.395754108328794820353331564731, −4.84463124856798251445842564811, −3.9733962692577628347536519238, −3.31913490658865155673716042571, −2.26780190894581986216950800862, −1.137838563576915315172922240319,
0.60556669933602601170184188512, 1.895817940097037726027532772150, 2.49975790739758711859030439740, 3.75840672257297726690151939324, 5.42236837844512792834709350211, 6.0434350906062452103782558012, 6.82528850732431868357879914002, 7.771603091766127688348813259693, 8.64670934754062314825418252007, 8.82231892952123514711549044213, 10.030541442268713052533756004203, 10.89966131484528346441500194225, 11.93680621278002702456435269542, 12.692064496953408851632354688577, 13.59114528909514190871011625606, 14.55031186215483259409619585280, 15.23476505728598439986318672681, 15.7536454876267473197232138981, 16.93165681281184033347625701185, 17.696190986475033091888666126672, 18.359860199837849795422744485603, 18.915054006523688149849527456764, 19.588523249877605568916243962167, 20.41190043306999757888156822760, 21.09005585970271391059358802714