L(s) = 1 | + (−0.848 + 0.529i)2-s + (0.559 − 0.829i)3-s + (0.438 − 0.898i)4-s + (−0.0348 + 0.999i)6-s + (−0.104 + 0.994i)7-s + (0.104 + 0.994i)8-s + (−0.374 − 0.927i)9-s + (−0.5 − 0.866i)12-s + (0.615 − 0.788i)13-s + (−0.438 − 0.898i)14-s + (−0.615 − 0.788i)16-s + (−0.374 + 0.927i)17-s + (0.809 + 0.587i)18-s + (0.766 + 0.642i)21-s + (−0.173 − 0.984i)23-s + (0.882 + 0.469i)24-s + ⋯ |
L(s) = 1 | + (−0.848 + 0.529i)2-s + (0.559 − 0.829i)3-s + (0.438 − 0.898i)4-s + (−0.0348 + 0.999i)6-s + (−0.104 + 0.994i)7-s + (0.104 + 0.994i)8-s + (−0.374 − 0.927i)9-s + (−0.5 − 0.866i)12-s + (0.615 − 0.788i)13-s + (−0.438 − 0.898i)14-s + (−0.615 − 0.788i)16-s + (−0.374 + 0.927i)17-s + (0.809 + 0.587i)18-s + (0.766 + 0.642i)21-s + (−0.173 − 0.984i)23-s + (0.882 + 0.469i)24-s + ⋯ |
Λ(s)=(=(1045s/2ΓR(s)L(s)(0.486−0.873i)Λ(1−s)
Λ(s)=(=(1045s/2ΓR(s)L(s)(0.486−0.873i)Λ(1−s)
Degree: |
1 |
Conductor: |
1045
= 5⋅11⋅19
|
Sign: |
0.486−0.873i
|
Analytic conductor: |
4.85295 |
Root analytic conductor: |
4.85295 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1045(129,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1045, (0: ), 0.486−0.873i)
|
Particular Values
L(21) |
≈ |
0.9102632720−0.5352751883i |
L(21) |
≈ |
0.9102632720−0.5352751883i |
L(1) |
≈ |
0.8412095071−0.1146407290i |
L(1) |
≈ |
0.8412095071−0.1146407290i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1 |
| 19 | 1 |
good | 2 | 1+(−0.848+0.529i)T |
| 3 | 1+(0.559−0.829i)T |
| 7 | 1+(−0.104+0.994i)T |
| 13 | 1+(0.615−0.788i)T |
| 17 | 1+(−0.374+0.927i)T |
| 23 | 1+(−0.173−0.984i)T |
| 29 | 1+(−0.997+0.0697i)T |
| 31 | 1+(0.978−0.207i)T |
| 37 | 1+(−0.809−0.587i)T |
| 41 | 1+(0.559−0.829i)T |
| 43 | 1+(0.173−0.984i)T |
| 47 | 1+(0.241−0.970i)T |
| 53 | 1+(0.990+0.139i)T |
| 59 | 1+(0.241+0.970i)T |
| 61 | 1+(0.882−0.469i)T |
| 67 | 1+(0.766−0.642i)T |
| 71 | 1+(−0.990+0.139i)T |
| 73 | 1+(0.961+0.275i)T |
| 79 | 1+(0.0348+0.999i)T |
| 83 | 1+(0.669−0.743i)T |
| 89 | 1+(0.939+0.342i)T |
| 97 | 1+(0.848−0.529i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.27469315073590587512543520113, −20.813793180847433741959412386612, −20.14322405676949744533950210181, −19.456165077636135972040785161967, −18.78880602858268519379903494374, −17.704426452232606705043526108205, −17.02160281258595345544154922506, −16.12621311186226406044583542159, −15.84559770658397881199715918248, −14.59229269298693732826978924691, −13.64298676990224521254123024719, −13.184495808347617981569262633404, −11.685797809620136563919118181072, −11.190197994168361667262454503972, −10.34929256202464817707744008168, −9.59887756354999193791685072068, −9.06008809644323132536663597885, −8.0636652573744594636221721014, −7.36455453831817371487718047339, −6.395754108328794820353331564731, −4.84463124856798251445842564811, −3.9733962692577628347536519238, −3.31913490658865155673716042571, −2.26780190894581986216950800862, −1.137838563576915315172922240319,
0.60556669933602601170184188512, 1.895817940097037726027532772150, 2.49975790739758711859030439740, 3.75840672257297726690151939324, 5.42236837844512792834709350211, 6.0434350906062452103782558012, 6.82528850732431868357879914002, 7.771603091766127688348813259693, 8.64670934754062314825418252007, 8.82231892952123514711549044213, 10.030541442268713052533756004203, 10.89966131484528346441500194225, 11.93680621278002702456435269542, 12.692064496953408851632354688577, 13.59114528909514190871011625606, 14.55031186215483259409619585280, 15.23476505728598439986318672681, 15.7536454876267473197232138981, 16.93165681281184033347625701185, 17.696190986475033091888666126672, 18.359860199837849795422744485603, 18.915054006523688149849527456764, 19.588523249877605568916243962167, 20.41190043306999757888156822760, 21.09005585970271391059358802714