Properties

Label 1-1045-1045.129-r0-0-0
Degree 11
Conductor 10451045
Sign 0.4860.873i0.486 - 0.873i
Analytic cond. 4.852954.85295
Root an. cond. 4.852954.85295
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.848 + 0.529i)2-s + (0.559 − 0.829i)3-s + (0.438 − 0.898i)4-s + (−0.0348 + 0.999i)6-s + (−0.104 + 0.994i)7-s + (0.104 + 0.994i)8-s + (−0.374 − 0.927i)9-s + (−0.5 − 0.866i)12-s + (0.615 − 0.788i)13-s + (−0.438 − 0.898i)14-s + (−0.615 − 0.788i)16-s + (−0.374 + 0.927i)17-s + (0.809 + 0.587i)18-s + (0.766 + 0.642i)21-s + (−0.173 − 0.984i)23-s + (0.882 + 0.469i)24-s + ⋯
L(s)  = 1  + (−0.848 + 0.529i)2-s + (0.559 − 0.829i)3-s + (0.438 − 0.898i)4-s + (−0.0348 + 0.999i)6-s + (−0.104 + 0.994i)7-s + (0.104 + 0.994i)8-s + (−0.374 − 0.927i)9-s + (−0.5 − 0.866i)12-s + (0.615 − 0.788i)13-s + (−0.438 − 0.898i)14-s + (−0.615 − 0.788i)16-s + (−0.374 + 0.927i)17-s + (0.809 + 0.587i)18-s + (0.766 + 0.642i)21-s + (−0.173 − 0.984i)23-s + (0.882 + 0.469i)24-s + ⋯

Functional equation

Λ(s)=(1045s/2ΓR(s)L(s)=((0.4860.873i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.486 - 0.873i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1045s/2ΓR(s)L(s)=((0.4860.873i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.486 - 0.873i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 10451045    =    511195 \cdot 11 \cdot 19
Sign: 0.4860.873i0.486 - 0.873i
Analytic conductor: 4.852954.85295
Root analytic conductor: 4.852954.85295
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1045(129,)\chi_{1045} (129, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1045, (0: ), 0.4860.873i)(1,\ 1045,\ (0:\ ),\ 0.486 - 0.873i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.91026327200.5352751883i0.9102632720 - 0.5352751883i
L(12)L(\frac12) \approx 0.91026327200.5352751883i0.9102632720 - 0.5352751883i
L(1)L(1) \approx 0.84120950710.1146407290i0.8412095071 - 0.1146407290i
L(1)L(1) \approx 0.84120950710.1146407290i0.8412095071 - 0.1146407290i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
11 1 1
19 1 1
good2 1+(0.848+0.529i)T 1 + (-0.848 + 0.529i)T
3 1+(0.5590.829i)T 1 + (0.559 - 0.829i)T
7 1+(0.104+0.994i)T 1 + (-0.104 + 0.994i)T
13 1+(0.6150.788i)T 1 + (0.615 - 0.788i)T
17 1+(0.374+0.927i)T 1 + (-0.374 + 0.927i)T
23 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
29 1+(0.997+0.0697i)T 1 + (-0.997 + 0.0697i)T
31 1+(0.9780.207i)T 1 + (0.978 - 0.207i)T
37 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
41 1+(0.5590.829i)T 1 + (0.559 - 0.829i)T
43 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
47 1+(0.2410.970i)T 1 + (0.241 - 0.970i)T
53 1+(0.990+0.139i)T 1 + (0.990 + 0.139i)T
59 1+(0.241+0.970i)T 1 + (0.241 + 0.970i)T
61 1+(0.8820.469i)T 1 + (0.882 - 0.469i)T
67 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
71 1+(0.990+0.139i)T 1 + (-0.990 + 0.139i)T
73 1+(0.961+0.275i)T 1 + (0.961 + 0.275i)T
79 1+(0.0348+0.999i)T 1 + (0.0348 + 0.999i)T
83 1+(0.6690.743i)T 1 + (0.669 - 0.743i)T
89 1+(0.939+0.342i)T 1 + (0.939 + 0.342i)T
97 1+(0.8480.529i)T 1 + (0.848 - 0.529i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.27469315073590587512543520113, −20.813793180847433741959412386612, −20.14322405676949744533950210181, −19.456165077636135972040785161967, −18.78880602858268519379903494374, −17.704426452232606705043526108205, −17.02160281258595345544154922506, −16.12621311186226406044583542159, −15.84559770658397881199715918248, −14.59229269298693732826978924691, −13.64298676990224521254123024719, −13.184495808347617981569262633404, −11.685797809620136563919118181072, −11.190197994168361667262454503972, −10.34929256202464817707744008168, −9.59887756354999193791685072068, −9.06008809644323132536663597885, −8.0636652573744594636221721014, −7.36455453831817371487718047339, −6.395754108328794820353331564731, −4.84463124856798251445842564811, −3.9733962692577628347536519238, −3.31913490658865155673716042571, −2.26780190894581986216950800862, −1.137838563576915315172922240319, 0.60556669933602601170184188512, 1.895817940097037726027532772150, 2.49975790739758711859030439740, 3.75840672257297726690151939324, 5.42236837844512792834709350211, 6.0434350906062452103782558012, 6.82528850732431868357879914002, 7.771603091766127688348813259693, 8.64670934754062314825418252007, 8.82231892952123514711549044213, 10.030541442268713052533756004203, 10.89966131484528346441500194225, 11.93680621278002702456435269542, 12.692064496953408851632354688577, 13.59114528909514190871011625606, 14.55031186215483259409619585280, 15.23476505728598439986318672681, 15.7536454876267473197232138981, 16.93165681281184033347625701185, 17.696190986475033091888666126672, 18.359860199837849795422744485603, 18.915054006523688149849527456764, 19.588523249877605568916243962167, 20.41190043306999757888156822760, 21.09005585970271391059358802714

Graph of the ZZ-function along the critical line