L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (0.809 − 0.587i)6-s + (0.309 + 0.951i)7-s + (−0.309 + 0.951i)8-s + (−0.809 − 0.587i)9-s + 12-s + (0.809 + 0.587i)13-s + (−0.309 + 0.951i)14-s + (−0.809 + 0.587i)16-s + (−0.809 + 0.587i)17-s + (−0.309 − 0.951i)18-s + 21-s − 23-s + (0.809 + 0.587i)24-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (0.809 − 0.587i)6-s + (0.309 + 0.951i)7-s + (−0.309 + 0.951i)8-s + (−0.809 − 0.587i)9-s + 12-s + (0.809 + 0.587i)13-s + (−0.309 + 0.951i)14-s + (−0.809 + 0.587i)16-s + (−0.809 + 0.587i)17-s + (−0.309 − 0.951i)18-s + 21-s − 23-s + (0.809 + 0.587i)24-s + ⋯ |
Λ(s)=(=(1045s/2ΓR(s)L(s)(0.0219+0.999i)Λ(1−s)
Λ(s)=(=(1045s/2ΓR(s)L(s)(0.0219+0.999i)Λ(1−s)
Degree: |
1 |
Conductor: |
1045
= 5⋅11⋅19
|
Sign: |
0.0219+0.999i
|
Analytic conductor: |
4.85295 |
Root analytic conductor: |
4.85295 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1045(189,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1045, (0: ), 0.0219+0.999i)
|
Particular Values
L(21) |
≈ |
1.758066028+1.719832472i |
L(21) |
≈ |
1.758066028+1.719832472i |
L(1) |
≈ |
1.629514152+0.6145153309i |
L(1) |
≈ |
1.629514152+0.6145153309i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1 |
| 19 | 1 |
good | 2 | 1+(0.809+0.587i)T |
| 3 | 1+(0.309−0.951i)T |
| 7 | 1+(0.309+0.951i)T |
| 13 | 1+(0.809+0.587i)T |
| 17 | 1+(−0.809+0.587i)T |
| 23 | 1−T |
| 29 | 1+(0.309+0.951i)T |
| 31 | 1+(0.809+0.587i)T |
| 37 | 1+(0.309+0.951i)T |
| 41 | 1+(0.309−0.951i)T |
| 43 | 1+T |
| 47 | 1+(−0.309+0.951i)T |
| 53 | 1+(−0.809−0.587i)T |
| 59 | 1+(−0.309−0.951i)T |
| 61 | 1+(0.809−0.587i)T |
| 67 | 1+T |
| 71 | 1+(0.809−0.587i)T |
| 73 | 1+(0.309+0.951i)T |
| 79 | 1+(−0.809−0.587i)T |
| 83 | 1+(−0.809+0.587i)T |
| 89 | 1−T |
| 97 | 1+(−0.809−0.587i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.183647824923817033779170473126, −20.700610911737716766348731074718, −20.01962463885655597000524105671, −19.53244802751086340491574025390, −18.29911348820409810824319538820, −17.44135030534633101442622863299, −16.333515813303329204140793321686, −15.70646525710010127992495083957, −15.02810981313017565889037045621, −13.992004642671172835342167819678, −13.72941288638916370910754072371, −12.79280737305743668250719559967, −11.476757777844845053238266620101, −11.109521943891513868498696051318, −10.20803529648277056158540909510, −9.684095477996386263350512564723, −8.542804725397515278744260677932, −7.584658580766517080379044654680, −6.33121846304769382243790523795, −5.52206545044516520456675116095, −4.37821695324002447874244229085, −4.11811204978946636973566824357, −3.0604123167326531945428755504, −2.15453409042674043502035412178, −0.73017361818717432113446046031,
1.61036198836225163651328647215, 2.401738086255448559506162587656, 3.36674553449239030678131716305, 4.41747545748980578920344753649, 5.50760207971898920559518940119, 6.32011558021839988908850446920, 6.79544889630490647601635609885, 8.07250123276875296713046323226, 8.42967739410292905320145081636, 9.2858002345733657618216001133, 11.00578554845193018925803503658, 11.667678791477422776129531541238, 12.48879956758018076913166487669, 12.9855306423227929744503396662, 14.129555613207375350235554753951, 14.27765387253752607822692027724, 15.51219645817455272256740864449, 15.90058213982295355323801375917, 17.16492908340243969426842308586, 17.80660288004752909779486944980, 18.496539520906940102647418513018, 19.37116469871119597733434840862, 20.31245660336784542343775679913, 21.05425690868370574967548733104, 21.86523547496070693570958213708