L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (0.809 − 0.587i)6-s + (0.309 + 0.951i)7-s + (−0.309 + 0.951i)8-s + (−0.809 − 0.587i)9-s + 12-s + (0.809 + 0.587i)13-s + (−0.309 + 0.951i)14-s + (−0.809 + 0.587i)16-s + (−0.809 + 0.587i)17-s + (−0.309 − 0.951i)18-s + 21-s − 23-s + (0.809 + 0.587i)24-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (0.809 − 0.587i)6-s + (0.309 + 0.951i)7-s + (−0.309 + 0.951i)8-s + (−0.809 − 0.587i)9-s + 12-s + (0.809 + 0.587i)13-s + (−0.309 + 0.951i)14-s + (−0.809 + 0.587i)16-s + (−0.809 + 0.587i)17-s + (−0.309 − 0.951i)18-s + 21-s − 23-s + (0.809 + 0.587i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0219 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0219 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.758066028 + 1.719832472i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.758066028 + 1.719832472i\) |
\(L(1)\) |
\(\approx\) |
\(1.629514152 + 0.6145153309i\) |
\(L(1)\) |
\(\approx\) |
\(1.629514152 + 0.6145153309i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 3 | \( 1 + (0.309 - 0.951i)T \) |
| 7 | \( 1 + (0.309 + 0.951i)T \) |
| 13 | \( 1 + (0.809 + 0.587i)T \) |
| 17 | \( 1 + (-0.809 + 0.587i)T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + (0.309 + 0.951i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| 37 | \( 1 + (0.309 + 0.951i)T \) |
| 41 | \( 1 + (0.309 - 0.951i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (-0.309 + 0.951i)T \) |
| 53 | \( 1 + (-0.809 - 0.587i)T \) |
| 59 | \( 1 + (-0.309 - 0.951i)T \) |
| 61 | \( 1 + (0.809 - 0.587i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (0.809 - 0.587i)T \) |
| 73 | \( 1 + (0.309 + 0.951i)T \) |
| 79 | \( 1 + (-0.809 - 0.587i)T \) |
| 83 | \( 1 + (-0.809 + 0.587i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (-0.809 - 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.183647824923817033779170473126, −20.700610911737716766348731074718, −20.01962463885655597000524105671, −19.53244802751086340491574025390, −18.29911348820409810824319538820, −17.44135030534633101442622863299, −16.333515813303329204140793321686, −15.70646525710010127992495083957, −15.02810981313017565889037045621, −13.992004642671172835342167819678, −13.72941288638916370910754072371, −12.79280737305743668250719559967, −11.476757777844845053238266620101, −11.109521943891513868498696051318, −10.20803529648277056158540909510, −9.684095477996386263350512564723, −8.542804725397515278744260677932, −7.584658580766517080379044654680, −6.33121846304769382243790523795, −5.52206545044516520456675116095, −4.37821695324002447874244229085, −4.11811204978946636973566824357, −3.0604123167326531945428755504, −2.15453409042674043502035412178, −0.73017361818717432113446046031,
1.61036198836225163651328647215, 2.401738086255448559506162587656, 3.36674553449239030678131716305, 4.41747545748980578920344753649, 5.50760207971898920559518940119, 6.32011558021839988908850446920, 6.79544889630490647601635609885, 8.07250123276875296713046323226, 8.42967739410292905320145081636, 9.2858002345733657618216001133, 11.00578554845193018925803503658, 11.667678791477422776129531541238, 12.48879956758018076913166487669, 12.9855306423227929744503396662, 14.129555613207375350235554753951, 14.27765387253752607822692027724, 15.51219645817455272256740864449, 15.90058213982295355323801375917, 17.16492908340243969426842308586, 17.80660288004752909779486944980, 18.496539520906940102647418513018, 19.37116469871119597733434840862, 20.31245660336784542343775679913, 21.05425690868370574967548733104, 21.86523547496070693570958213708