Properties

Label 1-1045-1045.189-r0-0-0
Degree 11
Conductor 10451045
Sign 0.0219+0.999i0.0219 + 0.999i
Analytic cond. 4.852954.85295
Root an. cond. 4.852954.85295
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.809 + 0.587i)2-s + (0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (0.809 − 0.587i)6-s + (0.309 + 0.951i)7-s + (−0.309 + 0.951i)8-s + (−0.809 − 0.587i)9-s + 12-s + (0.809 + 0.587i)13-s + (−0.309 + 0.951i)14-s + (−0.809 + 0.587i)16-s + (−0.809 + 0.587i)17-s + (−0.309 − 0.951i)18-s + 21-s − 23-s + (0.809 + 0.587i)24-s + ⋯
L(s)  = 1  + (0.809 + 0.587i)2-s + (0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (0.809 − 0.587i)6-s + (0.309 + 0.951i)7-s + (−0.309 + 0.951i)8-s + (−0.809 − 0.587i)9-s + 12-s + (0.809 + 0.587i)13-s + (−0.309 + 0.951i)14-s + (−0.809 + 0.587i)16-s + (−0.809 + 0.587i)17-s + (−0.309 − 0.951i)18-s + 21-s − 23-s + (0.809 + 0.587i)24-s + ⋯

Functional equation

Λ(s)=(1045s/2ΓR(s)L(s)=((0.0219+0.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0219 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1045s/2ΓR(s)L(s)=((0.0219+0.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0219 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 10451045    =    511195 \cdot 11 \cdot 19
Sign: 0.0219+0.999i0.0219 + 0.999i
Analytic conductor: 4.852954.85295
Root analytic conductor: 4.852954.85295
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1045(189,)\chi_{1045} (189, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1045, (0: ), 0.0219+0.999i)(1,\ 1045,\ (0:\ ),\ 0.0219 + 0.999i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.758066028+1.719832472i1.758066028 + 1.719832472i
L(12)L(\frac12) \approx 1.758066028+1.719832472i1.758066028 + 1.719832472i
L(1)L(1) \approx 1.629514152+0.6145153309i1.629514152 + 0.6145153309i
L(1)L(1) \approx 1.629514152+0.6145153309i1.629514152 + 0.6145153309i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
11 1 1
19 1 1
good2 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
3 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
7 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
13 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
17 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
23 1T 1 - T
29 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
31 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
37 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
41 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
43 1+T 1 + T
47 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
53 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
59 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
61 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
67 1+T 1 + T
71 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
73 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
79 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
83 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
89 1T 1 - T
97 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.183647824923817033779170473126, −20.700610911737716766348731074718, −20.01962463885655597000524105671, −19.53244802751086340491574025390, −18.29911348820409810824319538820, −17.44135030534633101442622863299, −16.333515813303329204140793321686, −15.70646525710010127992495083957, −15.02810981313017565889037045621, −13.992004642671172835342167819678, −13.72941288638916370910754072371, −12.79280737305743668250719559967, −11.476757777844845053238266620101, −11.109521943891513868498696051318, −10.20803529648277056158540909510, −9.684095477996386263350512564723, −8.542804725397515278744260677932, −7.584658580766517080379044654680, −6.33121846304769382243790523795, −5.52206545044516520456675116095, −4.37821695324002447874244229085, −4.11811204978946636973566824357, −3.0604123167326531945428755504, −2.15453409042674043502035412178, −0.73017361818717432113446046031, 1.61036198836225163651328647215, 2.401738086255448559506162587656, 3.36674553449239030678131716305, 4.41747545748980578920344753649, 5.50760207971898920559518940119, 6.32011558021839988908850446920, 6.79544889630490647601635609885, 8.07250123276875296713046323226, 8.42967739410292905320145081636, 9.2858002345733657618216001133, 11.00578554845193018925803503658, 11.667678791477422776129531541238, 12.48879956758018076913166487669, 12.9855306423227929744503396662, 14.129555613207375350235554753951, 14.27765387253752607822692027724, 15.51219645817455272256740864449, 15.90058213982295355323801375917, 17.16492908340243969426842308586, 17.80660288004752909779486944980, 18.496539520906940102647418513018, 19.37116469871119597733434840862, 20.31245660336784542343775679913, 21.05425690868370574967548733104, 21.86523547496070693570958213708

Graph of the ZZ-function along the critical line