L(s) = 1 | + (0.802 + 0.597i)2-s + (0.286 + 0.957i)4-s + (0.448 + 0.893i)5-s + (0.230 + 0.973i)7-s + (−0.342 + 0.939i)8-s + (−0.173 + 0.984i)10-s + (0.448 − 0.893i)11-s + (−0.396 + 0.918i)14-s + (−0.835 + 0.549i)16-s + (0.173 − 0.984i)17-s + (−0.342 + 0.939i)19-s + (−0.727 + 0.686i)20-s + (0.893 − 0.448i)22-s + (0.973 + 0.230i)23-s + (−0.597 + 0.802i)25-s + ⋯ |
L(s) = 1 | + (0.802 + 0.597i)2-s + (0.286 + 0.957i)4-s + (0.448 + 0.893i)5-s + (0.230 + 0.973i)7-s + (−0.342 + 0.939i)8-s + (−0.173 + 0.984i)10-s + (0.448 − 0.893i)11-s + (−0.396 + 0.918i)14-s + (−0.835 + 0.549i)16-s + (0.173 − 0.984i)17-s + (−0.342 + 0.939i)19-s + (−0.727 + 0.686i)20-s + (0.893 − 0.448i)22-s + (0.973 + 0.230i)23-s + (−0.597 + 0.802i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.736 + 0.676i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.736 + 0.676i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9790659515 + 2.511901410i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9790659515 + 2.511901410i\) |
\(L(1)\) |
\(\approx\) |
\(1.385138891 + 1.182399946i\) |
\(L(1)\) |
\(\approx\) |
\(1.385138891 + 1.182399946i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.802 + 0.597i)T \) |
| 5 | \( 1 + (0.448 + 0.893i)T \) |
| 7 | \( 1 + (0.230 + 0.973i)T \) |
| 11 | \( 1 + (0.448 - 0.893i)T \) |
| 17 | \( 1 + (0.173 - 0.984i)T \) |
| 19 | \( 1 + (-0.342 + 0.939i)T \) |
| 23 | \( 1 + (0.973 + 0.230i)T \) |
| 29 | \( 1 + (0.993 + 0.116i)T \) |
| 31 | \( 1 + (0.727 + 0.686i)T \) |
| 37 | \( 1 + (-0.642 + 0.766i)T \) |
| 41 | \( 1 + (0.918 + 0.396i)T \) |
| 43 | \( 1 + (-0.893 - 0.448i)T \) |
| 47 | \( 1 + (-0.727 + 0.686i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (-0.448 - 0.893i)T \) |
| 61 | \( 1 + (-0.686 - 0.727i)T \) |
| 67 | \( 1 + (0.802 - 0.597i)T \) |
| 71 | \( 1 + (-0.642 + 0.766i)T \) |
| 73 | \( 1 + (0.342 - 0.939i)T \) |
| 79 | \( 1 + (-0.993 - 0.116i)T \) |
| 83 | \( 1 + (0.116 - 0.993i)T \) |
| 89 | \( 1 + (-0.642 - 0.766i)T \) |
| 97 | \( 1 + (-0.998 + 0.0581i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.15797321954953183803622072186, −20.60525207611455636034552325095, −19.68974387213581379083848694977, −19.484398819582723682941650458222, −18.00705133856539641756622221335, −17.27523925514427812120750020128, −16.64728784874085497260799030278, −15.51405005574973605631064780813, −14.80192251588081411110035465427, −13.930596947965371902451951758780, −13.24532988257995934160338177903, −12.63790155999632259366274278773, −11.865447899409406286453541870690, −10.85490295771922688620402435484, −10.168634155030225141756559688253, −9.39403292918626649883344189993, −8.43881886777758673114689070515, −7.16007739695325044749485639373, −6.41444290080486352319350798896, −5.35086774438372060662643738367, −4.46318699471230474258198378559, −4.0967157353681030794925785079, −2.70285352508473881318728403536, −1.6514821232340347034027790990, −0.887546274816796435285571007925,
1.71666003624758620610404992301, 2.94067481459664198358223634015, 3.25736101109060064961627061485, 4.7080567812914488529151565078, 5.50818497387619089087509834908, 6.298496472267303786632475276247, 6.86813154481890839768965379004, 8.02241892677912052230033431751, 8.7308693079846459572115101199, 9.74120781566093833722694973933, 10.936759188296409202267155565819, 11.62845888397070946184966918558, 12.32271244721817068283104274556, 13.381794435312755437058493601077, 14.145130235178116988539335613827, 14.58921770540827924226195132191, 15.461880073454907269500884071141, 16.14388286619786810400745380537, 17.07788015387117193051648108094, 17.84835515104551994641328906195, 18.6394279905738699463060271354, 19.30859563635234941444042478070, 20.64704651612040176928082825847, 21.49212928911119494748036118414, 21.66531067338668128570423475574