L(s) = 1 | + (0.835 + 0.549i)2-s + (0.396 + 0.918i)4-s + (0.286 − 0.957i)5-s + (−0.597 − 0.802i)7-s + (−0.173 + 0.984i)8-s + (0.766 − 0.642i)10-s + (0.286 + 0.957i)11-s + (−0.0581 − 0.998i)14-s + (−0.686 + 0.727i)16-s + (0.766 − 0.642i)17-s + (−0.173 + 0.984i)19-s + (0.993 − 0.116i)20-s + (−0.286 + 0.957i)22-s + (0.597 − 0.802i)23-s + (−0.835 − 0.549i)25-s + ⋯ |
L(s) = 1 | + (0.835 + 0.549i)2-s + (0.396 + 0.918i)4-s + (0.286 − 0.957i)5-s + (−0.597 − 0.802i)7-s + (−0.173 + 0.984i)8-s + (0.766 − 0.642i)10-s + (0.286 + 0.957i)11-s + (−0.0581 − 0.998i)14-s + (−0.686 + 0.727i)16-s + (0.766 − 0.642i)17-s + (−0.173 + 0.984i)19-s + (0.993 − 0.116i)20-s + (−0.286 + 0.957i)22-s + (0.597 − 0.802i)23-s + (−0.835 − 0.549i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.928 + 0.372i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.928 + 0.372i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.525841097 + 0.4874486014i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.525841097 + 0.4874486014i\) |
\(L(1)\) |
\(\approx\) |
\(1.718117309 + 0.3207937665i\) |
\(L(1)\) |
\(\approx\) |
\(1.718117309 + 0.3207937665i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.835 + 0.549i)T \) |
| 5 | \( 1 + (0.286 - 0.957i)T \) |
| 7 | \( 1 + (-0.597 - 0.802i)T \) |
| 11 | \( 1 + (0.286 + 0.957i)T \) |
| 17 | \( 1 + (0.766 - 0.642i)T \) |
| 19 | \( 1 + (-0.173 + 0.984i)T \) |
| 23 | \( 1 + (0.597 - 0.802i)T \) |
| 29 | \( 1 + (0.893 - 0.448i)T \) |
| 31 | \( 1 + (0.993 + 0.116i)T \) |
| 37 | \( 1 + (0.939 + 0.342i)T \) |
| 41 | \( 1 + (0.0581 + 0.998i)T \) |
| 43 | \( 1 + (-0.286 - 0.957i)T \) |
| 47 | \( 1 + (0.993 - 0.116i)T \) |
| 53 | \( 1 + (-0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.286 - 0.957i)T \) |
| 61 | \( 1 + (-0.993 + 0.116i)T \) |
| 67 | \( 1 + (0.835 - 0.549i)T \) |
| 71 | \( 1 + (0.939 + 0.342i)T \) |
| 73 | \( 1 + (-0.173 + 0.984i)T \) |
| 79 | \( 1 + (0.893 - 0.448i)T \) |
| 83 | \( 1 + (-0.893 + 0.448i)T \) |
| 89 | \( 1 + (0.939 - 0.342i)T \) |
| 97 | \( 1 + (-0.973 - 0.230i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.67390598709424377558861267537, −21.09528589598417896844742658655, −19.703699301157259229425006003246, −19.25398599307435878124861965933, −18.70427936201941065291841274880, −17.785783511776343488978202261141, −16.66448577327147756515235217645, −15.59625794689280897414075362697, −15.178953524440634419755522773760, −14.23264643875228311766390486918, −13.639374762440377986297862800630, −12.80225533156443904123320893269, −11.93721332411664468408151872238, −11.19505373542122117339545788247, −10.49994054913024059866706324554, −9.62471453957274016388614816170, −8.83639214561929754302229424762, −7.44558131651180090597528175155, −6.3507614021180708659565790452, −6.033663646211443973868505949914, −5.05809127232933787482082681812, −3.76321388911063762979416788528, −3.01284029248120937230195891854, −2.45206915957581111478291903888, −1.1008313145829288635774694668,
1.01239637071745075526012927585, 2.32845659961311490792029483044, 3.46494343446765923813807134147, 4.41718862952213921092936391049, 4.92598639250100152960482605271, 6.06171981125898719908758910365, 6.75174781603647924172675498924, 7.696551253438326548123374667454, 8.43717525922726625729208346724, 9.60113122518278251440495283346, 10.21426414259401342542273992329, 11.5793221771913667743164836545, 12.430602076830698038189969870088, 12.80480508081589209958273161184, 13.78649158283666987322895543404, 14.29504923921563432037134180203, 15.34815129434049484599134350010, 16.13040200530655701223640194510, 16.89525988854754120056852488937, 17.152442301953051144334694222527, 18.28753080740992211540948846183, 19.502570345593238975751097312512, 20.421858620341867825536467366302, 20.68563326449464932123683169384, 21.57281090663734858068537397132