L(s) = 1 | + (0.549 + 0.835i)2-s + (−0.396 + 0.918i)4-s + (0.230 − 0.973i)5-s + (0.918 − 0.396i)7-s + (−0.984 + 0.173i)8-s + (0.939 − 0.342i)10-s + (−0.957 − 0.286i)11-s + (0.835 + 0.549i)14-s + (−0.686 − 0.727i)16-s + (0.173 − 0.984i)17-s + (0.642 + 0.766i)19-s + (0.802 + 0.597i)20-s + (−0.286 − 0.957i)22-s + (0.396 − 0.918i)23-s + (−0.893 − 0.448i)25-s + ⋯ |
L(s) = 1 | + (0.549 + 0.835i)2-s + (−0.396 + 0.918i)4-s + (0.230 − 0.973i)5-s + (0.918 − 0.396i)7-s + (−0.984 + 0.173i)8-s + (0.939 − 0.342i)10-s + (−0.957 − 0.286i)11-s + (0.835 + 0.549i)14-s + (−0.686 − 0.727i)16-s + (0.173 − 0.984i)17-s + (0.642 + 0.766i)19-s + (0.802 + 0.597i)20-s + (−0.286 − 0.957i)22-s + (0.396 − 0.918i)23-s + (−0.893 − 0.448i)25-s + ⋯ |
Λ(s)=(=(1053s/2ΓR(s)L(s)(0.941−0.336i)Λ(1−s)
Λ(s)=(=(1053s/2ΓR(s)L(s)(0.941−0.336i)Λ(1−s)
Degree: |
1 |
Conductor: |
1053
= 34⋅13
|
Sign: |
0.941−0.336i
|
Analytic conductor: |
4.89011 |
Root analytic conductor: |
4.89011 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1053(254,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1053, (0: ), 0.941−0.336i)
|
Particular Values
L(21) |
≈ |
1.817023816−0.3144007408i |
L(21) |
≈ |
1.817023816−0.3144007408i |
L(1) |
≈ |
1.365051569+0.2024970932i |
L(1) |
≈ |
1.365051569+0.2024970932i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1 |
good | 2 | 1+(0.549+0.835i)T |
| 5 | 1+(0.230−0.973i)T |
| 7 | 1+(0.918−0.396i)T |
| 11 | 1+(−0.957−0.286i)T |
| 17 | 1+(0.173−0.984i)T |
| 19 | 1+(0.642+0.766i)T |
| 23 | 1+(0.396−0.918i)T |
| 29 | 1+(−0.893−0.448i)T |
| 31 | 1+(0.918+0.396i)T |
| 37 | 1+(−0.984−0.173i)T |
| 41 | 1+(−0.448−0.893i)T |
| 43 | 1+(0.686+0.727i)T |
| 47 | 1+(−0.918+0.396i)T |
| 53 | 1+(0.5−0.866i)T |
| 59 | 1+(0.957−0.286i)T |
| 61 | 1+(0.597−0.802i)T |
| 67 | 1+(−0.998−0.0581i)T |
| 71 | 1+(0.642−0.766i)T |
| 73 | 1+(0.984−0.173i)T |
| 79 | 1+(−0.0581−0.998i)T |
| 83 | 1+(−0.998+0.0581i)T |
| 89 | 1+(0.642+0.766i)T |
| 97 | 1+(−0.957−0.286i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.38313896675835988796564997511, −21.11154548829858491328146928219, −20.104497496110893474200914069037, −19.22237062528493282025575061104, −18.52559066779554460103758038338, −17.93172366942419297399074060274, −17.25143215217123843407753767744, −15.54110989478388949904898810062, −15.19476218524685862448390974697, −14.429499866282489779792622156282, −13.60285407508977411761020203125, −12.96041515137011584448822009467, −11.840923043071885087262889827472, −11.277275212116937005869715072947, −10.52929954037596072010068019900, −9.87888622520041986684189575316, −8.83555645843387156339520268922, −7.78320307208126147608441026199, −6.82657210591921510295316410856, −5.63362583409676924257292118845, −5.18981274655530821249648348757, −4.02599607488342944413468068111, −3.03082166873128360795023574852, −2.28566646039050097527161753740, −1.39893673031553747860494253212,
0.65134167692708109641222736623, 2.08985910969991543609676314794, 3.32176158970261588496679688525, 4.425582171666970506060835134962, 5.12009210399666630649023208351, 5.60163976122166015227337506786, 6.84826590911257808423744114141, 7.83294296689704830500171282606, 8.251390875231588728144720493570, 9.18247743931387589895234583267, 10.18840194727220528087748905994, 11.37422831525479675760804629298, 12.16115596765537650344209484196, 12.959923559653079935352372627473, 13.751980852191997604475873875819, 14.23936572455387201605356069907, 15.26060140593619767348911591176, 16.14530978620839899958989293311, 16.55714201001315923542520197607, 17.49940121145126855131111951028, 18.03708393442989287992542958851, 18.96640186377930219953829277350, 20.445733169707989846936409734059, 20.86126461300931164894360575586, 21.22996606435128188594652609099