L(s) = 1 | + (0.549 + 0.835i)2-s + (−0.396 + 0.918i)4-s + (0.230 − 0.973i)5-s + (0.918 − 0.396i)7-s + (−0.984 + 0.173i)8-s + (0.939 − 0.342i)10-s + (−0.957 − 0.286i)11-s + (0.835 + 0.549i)14-s + (−0.686 − 0.727i)16-s + (0.173 − 0.984i)17-s + (0.642 + 0.766i)19-s + (0.802 + 0.597i)20-s + (−0.286 − 0.957i)22-s + (0.396 − 0.918i)23-s + (−0.893 − 0.448i)25-s + ⋯ |
L(s) = 1 | + (0.549 + 0.835i)2-s + (−0.396 + 0.918i)4-s + (0.230 − 0.973i)5-s + (0.918 − 0.396i)7-s + (−0.984 + 0.173i)8-s + (0.939 − 0.342i)10-s + (−0.957 − 0.286i)11-s + (0.835 + 0.549i)14-s + (−0.686 − 0.727i)16-s + (0.173 − 0.984i)17-s + (0.642 + 0.766i)19-s + (0.802 + 0.597i)20-s + (−0.286 − 0.957i)22-s + (0.396 − 0.918i)23-s + (−0.893 − 0.448i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.941 - 0.336i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.941 - 0.336i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.817023816 - 0.3144007408i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.817023816 - 0.3144007408i\) |
\(L(1)\) |
\(\approx\) |
\(1.365051569 + 0.2024970932i\) |
\(L(1)\) |
\(\approx\) |
\(1.365051569 + 0.2024970932i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.549 + 0.835i)T \) |
| 5 | \( 1 + (0.230 - 0.973i)T \) |
| 7 | \( 1 + (0.918 - 0.396i)T \) |
| 11 | \( 1 + (-0.957 - 0.286i)T \) |
| 17 | \( 1 + (0.173 - 0.984i)T \) |
| 19 | \( 1 + (0.642 + 0.766i)T \) |
| 23 | \( 1 + (0.396 - 0.918i)T \) |
| 29 | \( 1 + (-0.893 - 0.448i)T \) |
| 31 | \( 1 + (0.918 + 0.396i)T \) |
| 37 | \( 1 + (-0.984 - 0.173i)T \) |
| 41 | \( 1 + (-0.448 - 0.893i)T \) |
| 43 | \( 1 + (0.686 + 0.727i)T \) |
| 47 | \( 1 + (-0.918 + 0.396i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.957 - 0.286i)T \) |
| 61 | \( 1 + (0.597 - 0.802i)T \) |
| 67 | \( 1 + (-0.998 - 0.0581i)T \) |
| 71 | \( 1 + (0.642 - 0.766i)T \) |
| 73 | \( 1 + (0.984 - 0.173i)T \) |
| 79 | \( 1 + (-0.0581 - 0.998i)T \) |
| 83 | \( 1 + (-0.998 + 0.0581i)T \) |
| 89 | \( 1 + (0.642 + 0.766i)T \) |
| 97 | \( 1 + (-0.957 - 0.286i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.38313896675835988796564997511, −21.11154548829858491328146928219, −20.104497496110893474200914069037, −19.22237062528493282025575061104, −18.52559066779554460103758038338, −17.93172366942419297399074060274, −17.25143215217123843407753767744, −15.54110989478388949904898810062, −15.19476218524685862448390974697, −14.429499866282489779792622156282, −13.60285407508977411761020203125, −12.96041515137011584448822009467, −11.840923043071885087262889827472, −11.277275212116937005869715072947, −10.52929954037596072010068019900, −9.87888622520041986684189575316, −8.83555645843387156339520268922, −7.78320307208126147608441026199, −6.82657210591921510295316410856, −5.63362583409676924257292118845, −5.18981274655530821249648348757, −4.02599607488342944413468068111, −3.03082166873128360795023574852, −2.28566646039050097527161753740, −1.39893673031553747860494253212,
0.65134167692708109641222736623, 2.08985910969991543609676314794, 3.32176158970261588496679688525, 4.425582171666970506060835134962, 5.12009210399666630649023208351, 5.60163976122166015227337506786, 6.84826590911257808423744114141, 7.83294296689704830500171282606, 8.251390875231588728144720493570, 9.18247743931387589895234583267, 10.18840194727220528087748905994, 11.37422831525479675760804629298, 12.16115596765537650344209484196, 12.959923559653079935352372627473, 13.751980852191997604475873875819, 14.23936572455387201605356069907, 15.26060140593619767348911591176, 16.14530978620839899958989293311, 16.55714201001315923542520197607, 17.49940121145126855131111951028, 18.03708393442989287992542958851, 18.96640186377930219953829277350, 20.445733169707989846936409734059, 20.86126461300931164894360575586, 21.22996606435128188594652609099