L(s) = 1 | + (0.396 − 0.918i)2-s + (−0.686 − 0.727i)4-s + (−0.835 + 0.549i)5-s + (−0.286 − 0.957i)7-s + (−0.939 + 0.342i)8-s + (0.173 + 0.984i)10-s + (−0.835 − 0.549i)11-s + (−0.993 − 0.116i)14-s + (−0.0581 + 0.998i)16-s + (0.173 + 0.984i)17-s + (−0.939 + 0.342i)19-s + (0.973 + 0.230i)20-s + (−0.835 + 0.549i)22-s + (−0.286 + 0.957i)23-s + (0.396 − 0.918i)25-s + ⋯ |
L(s) = 1 | + (0.396 − 0.918i)2-s + (−0.686 − 0.727i)4-s + (−0.835 + 0.549i)5-s + (−0.286 − 0.957i)7-s + (−0.939 + 0.342i)8-s + (0.173 + 0.984i)10-s + (−0.835 − 0.549i)11-s + (−0.993 − 0.116i)14-s + (−0.0581 + 0.998i)16-s + (0.173 + 0.984i)17-s + (−0.939 + 0.342i)19-s + (0.973 + 0.230i)20-s + (−0.835 + 0.549i)22-s + (−0.286 + 0.957i)23-s + (0.396 − 0.918i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7927017229 + 0.02945676966i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7927017229 + 0.02945676966i\) |
\(L(1)\) |
\(\approx\) |
\(0.7639598494 - 0.3464779210i\) |
\(L(1)\) |
\(\approx\) |
\(0.7639598494 - 0.3464779210i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.396 - 0.918i)T \) |
| 5 | \( 1 + (-0.835 + 0.549i)T \) |
| 7 | \( 1 + (-0.286 - 0.957i)T \) |
| 11 | \( 1 + (-0.835 - 0.549i)T \) |
| 17 | \( 1 + (0.173 + 0.984i)T \) |
| 19 | \( 1 + (-0.939 + 0.342i)T \) |
| 23 | \( 1 + (-0.286 + 0.957i)T \) |
| 29 | \( 1 + (0.597 + 0.802i)T \) |
| 31 | \( 1 + (0.973 - 0.230i)T \) |
| 37 | \( 1 + (0.766 - 0.642i)T \) |
| 41 | \( 1 + (-0.993 - 0.116i)T \) |
| 43 | \( 1 + (-0.835 - 0.549i)T \) |
| 47 | \( 1 + (0.973 + 0.230i)T \) |
| 53 | \( 1 + (-0.5 - 0.866i)T \) |
| 59 | \( 1 + (-0.835 + 0.549i)T \) |
| 61 | \( 1 + (0.973 + 0.230i)T \) |
| 67 | \( 1 + (0.396 + 0.918i)T \) |
| 71 | \( 1 + (0.766 - 0.642i)T \) |
| 73 | \( 1 + (-0.939 + 0.342i)T \) |
| 79 | \( 1 + (0.597 + 0.802i)T \) |
| 83 | \( 1 + (0.597 + 0.802i)T \) |
| 89 | \( 1 + (0.766 + 0.642i)T \) |
| 97 | \( 1 + (0.893 - 0.448i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.659133315203937823749015401299, −20.86898153424795084141095775925, −20.11120269725708097059876340595, −18.87150126865869035885905043409, −18.5014931635935255884147443877, −17.46931553246843005768370783071, −16.63831925057763647080160321338, −15.81552476513245863011370398683, −15.44507332912996714466868868085, −14.75185170633614387403639864220, −13.61159933592044282703588797842, −12.838929736740380020011009499776, −12.20887051616303239773500454794, −11.58177441448315576075595315684, −10.1427055863978154892039374300, −9.19387256477221023739823400777, −8.3768858978927149698108449854, −7.873287489640447910380392128235, −6.81198930305845398644133293113, −6.030025458527297423007349102945, −4.783775960788805420489156949527, −4.67523604422878174711904071908, −3.25082099412952029722663558214, −2.41559501316370408772088727448, −0.37428225177118964299251300998,
0.908865328895285965968698871903, 2.240004215347327176168935281606, 3.33862936977010739072566946589, 3.815258293976315380357833502304, 4.7205914406972374571514065423, 5.88132332654578494701483280531, 6.76732096890399446919692102016, 7.90567139543797564957669850821, 8.54511547375030214063348231485, 9.93453711890508124059191628598, 10.52220215533283597896590096458, 11.03257816627349767623693475102, 11.96026530760224191163514641369, 12.798043667764141853577465005068, 13.51246291523297173655362638474, 14.289385533669502160159578735941, 15.108941042283771784037970993203, 15.85765677129070581684113584357, 16.89273232106539486706039693100, 17.82505605816865837057377117845, 18.75649994284517161771080737560, 19.31332271833814812854892801419, 19.87130245444905826936636789546, 20.71455605650712114512434037057, 21.5310527123335681309390278354