L(s) = 1 | + (−0.893 − 0.448i)2-s + (0.597 + 0.802i)4-s + (0.286 + 0.957i)5-s + (−0.396 − 0.918i)7-s + (−0.173 − 0.984i)8-s + (0.173 − 0.984i)10-s + (−0.973 + 0.230i)11-s + (−0.0581 + 0.998i)14-s + (−0.286 + 0.957i)16-s + (−0.939 + 0.342i)17-s + (0.939 + 0.342i)19-s + (−0.597 + 0.802i)20-s + (0.973 + 0.230i)22-s + (0.396 − 0.918i)23-s + (−0.835 + 0.549i)25-s + ⋯ |
L(s) = 1 | + (−0.893 − 0.448i)2-s + (0.597 + 0.802i)4-s + (0.286 + 0.957i)5-s + (−0.396 − 0.918i)7-s + (−0.173 − 0.984i)8-s + (0.173 − 0.984i)10-s + (−0.973 + 0.230i)11-s + (−0.0581 + 0.998i)14-s + (−0.286 + 0.957i)16-s + (−0.939 + 0.342i)17-s + (0.939 + 0.342i)19-s + (−0.597 + 0.802i)20-s + (0.973 + 0.230i)22-s + (0.396 − 0.918i)23-s + (−0.835 + 0.549i)25-s + ⋯ |
Λ(s)=(=(1053s/2ΓR(s)L(s)(−0.360−0.932i)Λ(1−s)
Λ(s)=(=(1053s/2ΓR(s)L(s)(−0.360−0.932i)Λ(1−s)
Degree: |
1 |
Conductor: |
1053
= 34⋅13
|
Sign: |
−0.360−0.932i
|
Analytic conductor: |
4.89011 |
Root analytic conductor: |
4.89011 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1053(259,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1053, (0: ), −0.360−0.932i)
|
Particular Values
L(21) |
≈ |
0.2889620096−0.4213169195i |
L(21) |
≈ |
0.2889620096−0.4213169195i |
L(1) |
≈ |
0.5960978694−0.1159639094i |
L(1) |
≈ |
0.5960978694−0.1159639094i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1 |
good | 2 | 1+(−0.893−0.448i)T |
| 5 | 1+(0.286+0.957i)T |
| 7 | 1+(−0.396−0.918i)T |
| 11 | 1+(−0.973+0.230i)T |
| 17 | 1+(−0.939+0.342i)T |
| 19 | 1+(0.939+0.342i)T |
| 23 | 1+(0.396−0.918i)T |
| 29 | 1+(−0.0581−0.998i)T |
| 31 | 1+(0.993−0.116i)T |
| 37 | 1+(−0.766−0.642i)T |
| 41 | 1+(−0.893+0.448i)T |
| 43 | 1+(−0.686−0.727i)T |
| 47 | 1+(0.993+0.116i)T |
| 53 | 1+(−0.5+0.866i)T |
| 59 | 1+(−0.973−0.230i)T |
| 61 | 1+(0.597−0.802i)T |
| 67 | 1+(0.0581−0.998i)T |
| 71 | 1+(−0.173+0.984i)T |
| 73 | 1+(−0.173−0.984i)T |
| 79 | 1+(0.893+0.448i)T |
| 83 | 1+(−0.893−0.448i)T |
| 89 | 1+(−0.173−0.984i)T |
| 97 | 1+(0.286−0.957i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.60929284614647146359090657250, −20.808513590684620601445188543238, −20.111289362977504252820383179920, −19.348891709212281459794935851487, −18.497953966408155557585655583425, −17.870603528703209978934187382552, −17.16926842231379615110501134030, −16.12191252518466896053955540325, −15.79240591037043708008914340942, −15.12453553025831563053616832692, −13.78641958400443375692243901135, −13.193512041632895489641547189244, −12.100017559796056616536062083895, −11.414677419023152633818858261343, −10.30832873303580780386557789544, −9.525006620695878522182418196614, −8.85651412901165436102552902227, −8.28191912458688485110277492488, −7.244458393869723627541977983884, −6.304695071002329882026654141774, −5.29254823408147896066472226677, −5.00329387913820030094252498886, −3.11831753989899192873786340482, −2.19682545781552155799337168904, −1.11294611187801328994497920632,
0.3081289250673970491522099183, 1.78563005461039976988597604464, 2.71226921911218021875046436436, 3.45420783426251300719186227986, 4.53190435964031569174378841924, 6.05135127436864158767831926980, 6.863606852157871267866188634205, 7.49256178776774779651050258838, 8.32510182070806531170591286932, 9.48860919554391484602223008316, 10.22986583584314575621494587054, 10.6341917466026341538902143333, 11.4383858485401786829379257722, 12.48687709975199239377781052436, 13.3806789884334019712283372373, 13.99512360582397753012395189029, 15.342971124192248599111961683763, 15.76963369951504136841921722727, 16.93665848312749464696852178995, 17.42024254570870211363617852749, 18.33979971244451755543105220672, 18.79499915015394423416056251328, 19.67843953810055813709312375314, 20.44828463934742990562838640800, 21.03270644757522857898480327398