Properties

Label 1-1053-1053.259-r0-0-0
Degree 11
Conductor 10531053
Sign 0.3600.932i-0.360 - 0.932i
Analytic cond. 4.890114.89011
Root an. cond. 4.890114.89011
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.893 − 0.448i)2-s + (0.597 + 0.802i)4-s + (0.286 + 0.957i)5-s + (−0.396 − 0.918i)7-s + (−0.173 − 0.984i)8-s + (0.173 − 0.984i)10-s + (−0.973 + 0.230i)11-s + (−0.0581 + 0.998i)14-s + (−0.286 + 0.957i)16-s + (−0.939 + 0.342i)17-s + (0.939 + 0.342i)19-s + (−0.597 + 0.802i)20-s + (0.973 + 0.230i)22-s + (0.396 − 0.918i)23-s + (−0.835 + 0.549i)25-s + ⋯
L(s)  = 1  + (−0.893 − 0.448i)2-s + (0.597 + 0.802i)4-s + (0.286 + 0.957i)5-s + (−0.396 − 0.918i)7-s + (−0.173 − 0.984i)8-s + (0.173 − 0.984i)10-s + (−0.973 + 0.230i)11-s + (−0.0581 + 0.998i)14-s + (−0.286 + 0.957i)16-s + (−0.939 + 0.342i)17-s + (0.939 + 0.342i)19-s + (−0.597 + 0.802i)20-s + (0.973 + 0.230i)22-s + (0.396 − 0.918i)23-s + (−0.835 + 0.549i)25-s + ⋯

Functional equation

Λ(s)=(1053s/2ΓR(s)L(s)=((0.3600.932i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.360 - 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1053s/2ΓR(s)L(s)=((0.3600.932i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.360 - 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 10531053    =    34133^{4} \cdot 13
Sign: 0.3600.932i-0.360 - 0.932i
Analytic conductor: 4.890114.89011
Root analytic conductor: 4.890114.89011
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1053(259,)\chi_{1053} (259, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1053, (0: ), 0.3600.932i)(1,\ 1053,\ (0:\ ),\ -0.360 - 0.932i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.28896200960.4213169195i0.2889620096 - 0.4213169195i
L(12)L(\frac12) \approx 0.28896200960.4213169195i0.2889620096 - 0.4213169195i
L(1)L(1) \approx 0.59609786940.1159639094i0.5960978694 - 0.1159639094i
L(1)L(1) \approx 0.59609786940.1159639094i0.5960978694 - 0.1159639094i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
13 1 1
good2 1+(0.8930.448i)T 1 + (-0.893 - 0.448i)T
5 1+(0.286+0.957i)T 1 + (0.286 + 0.957i)T
7 1+(0.3960.918i)T 1 + (-0.396 - 0.918i)T
11 1+(0.973+0.230i)T 1 + (-0.973 + 0.230i)T
17 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
19 1+(0.939+0.342i)T 1 + (0.939 + 0.342i)T
23 1+(0.3960.918i)T 1 + (0.396 - 0.918i)T
29 1+(0.05810.998i)T 1 + (-0.0581 - 0.998i)T
31 1+(0.9930.116i)T 1 + (0.993 - 0.116i)T
37 1+(0.7660.642i)T 1 + (-0.766 - 0.642i)T
41 1+(0.893+0.448i)T 1 + (-0.893 + 0.448i)T
43 1+(0.6860.727i)T 1 + (-0.686 - 0.727i)T
47 1+(0.993+0.116i)T 1 + (0.993 + 0.116i)T
53 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
59 1+(0.9730.230i)T 1 + (-0.973 - 0.230i)T
61 1+(0.5970.802i)T 1 + (0.597 - 0.802i)T
67 1+(0.05810.998i)T 1 + (0.0581 - 0.998i)T
71 1+(0.173+0.984i)T 1 + (-0.173 + 0.984i)T
73 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
79 1+(0.893+0.448i)T 1 + (0.893 + 0.448i)T
83 1+(0.8930.448i)T 1 + (-0.893 - 0.448i)T
89 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
97 1+(0.2860.957i)T 1 + (0.286 - 0.957i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.60929284614647146359090657250, −20.808513590684620601445188543238, −20.111289362977504252820383179920, −19.348891709212281459794935851487, −18.497953966408155557585655583425, −17.870603528703209978934187382552, −17.16926842231379615110501134030, −16.12191252518466896053955540325, −15.79240591037043708008914340942, −15.12453553025831563053616832692, −13.78641958400443375692243901135, −13.193512041632895489641547189244, −12.100017559796056616536062083895, −11.414677419023152633818858261343, −10.30832873303580780386557789544, −9.525006620695878522182418196614, −8.85651412901165436102552902227, −8.28191912458688485110277492488, −7.244458393869723627541977983884, −6.304695071002329882026654141774, −5.29254823408147896066472226677, −5.00329387913820030094252498886, −3.11831753989899192873786340482, −2.19682545781552155799337168904, −1.11294611187801328994497920632, 0.3081289250673970491522099183, 1.78563005461039976988597604464, 2.71226921911218021875046436436, 3.45420783426251300719186227986, 4.53190435964031569174378841924, 6.05135127436864158767831926980, 6.863606852157871267866188634205, 7.49256178776774779651050258838, 8.32510182070806531170591286932, 9.48860919554391484602223008316, 10.22986583584314575621494587054, 10.6341917466026341538902143333, 11.4383858485401786829379257722, 12.48687709975199239377781052436, 13.3806789884334019712283372373, 13.99512360582397753012395189029, 15.342971124192248599111961683763, 15.76963369951504136841921722727, 16.93665848312749464696852178995, 17.42024254570870211363617852749, 18.33979971244451755543105220672, 18.79499915015394423416056251328, 19.67843953810055813709312375314, 20.44828463934742990562838640800, 21.03270644757522857898480327398

Graph of the ZZ-function along the critical line