L(s) = 1 | + (−0.396 + 0.918i)2-s + (−0.686 − 0.727i)4-s + (−0.893 − 0.448i)5-s + (0.686 − 0.727i)7-s + (0.939 − 0.342i)8-s + (0.766 − 0.642i)10-s + (0.835 + 0.549i)11-s + (0.396 + 0.918i)14-s + (−0.0581 + 0.998i)16-s + (−0.939 − 0.342i)17-s + (−0.173 + 0.984i)19-s + (0.286 + 0.957i)20-s + (−0.835 + 0.549i)22-s + (−0.686 − 0.727i)23-s + (0.597 + 0.802i)25-s + ⋯ |
L(s) = 1 | + (−0.396 + 0.918i)2-s + (−0.686 − 0.727i)4-s + (−0.893 − 0.448i)5-s + (0.686 − 0.727i)7-s + (0.939 − 0.342i)8-s + (0.766 − 0.642i)10-s + (0.835 + 0.549i)11-s + (0.396 + 0.918i)14-s + (−0.0581 + 0.998i)16-s + (−0.939 − 0.342i)17-s + (−0.173 + 0.984i)19-s + (0.286 + 0.957i)20-s + (−0.835 + 0.549i)22-s + (−0.686 − 0.727i)23-s + (0.597 + 0.802i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.761 + 0.647i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.761 + 0.647i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9378208814 + 0.3448313349i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9378208814 + 0.3448313349i\) |
\(L(1)\) |
\(\approx\) |
\(0.7709803377 + 0.2177577893i\) |
\(L(1)\) |
\(\approx\) |
\(0.7709803377 + 0.2177577893i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.396 + 0.918i)T \) |
| 5 | \( 1 + (-0.893 - 0.448i)T \) |
| 7 | \( 1 + (0.686 - 0.727i)T \) |
| 11 | \( 1 + (0.835 + 0.549i)T \) |
| 17 | \( 1 + (-0.939 - 0.342i)T \) |
| 19 | \( 1 + (-0.173 + 0.984i)T \) |
| 23 | \( 1 + (-0.686 - 0.727i)T \) |
| 29 | \( 1 + (0.597 + 0.802i)T \) |
| 31 | \( 1 + (0.686 + 0.727i)T \) |
| 37 | \( 1 + (0.939 + 0.342i)T \) |
| 41 | \( 1 + (-0.597 + 0.802i)T \) |
| 43 | \( 1 + (-0.0581 + 0.998i)T \) |
| 47 | \( 1 + (0.686 - 0.727i)T \) |
| 53 | \( 1 + (-0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.835 - 0.549i)T \) |
| 61 | \( 1 + (-0.286 - 0.957i)T \) |
| 67 | \( 1 + (0.993 + 0.116i)T \) |
| 71 | \( 1 + (-0.173 - 0.984i)T \) |
| 73 | \( 1 + (0.939 - 0.342i)T \) |
| 79 | \( 1 + (-0.993 + 0.116i)T \) |
| 83 | \( 1 + (0.993 - 0.116i)T \) |
| 89 | \( 1 + (-0.173 + 0.984i)T \) |
| 97 | \( 1 + (0.835 + 0.549i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.60098309169300492471013157649, −20.49060091802362873063809881601, −19.760069553316819518652843668841, −19.183254137558936987190342011995, −18.53912545600016931117828850955, −17.63746763059249477600160950685, −17.11795847205257962021047986684, −15.83007316682794241170469393401, −15.26435273248443013365796272643, −14.22767682236872834715856317313, −13.49485896984101213702931250579, −12.38571450949886465459569669304, −11.58956950217180791097230434432, −11.35508935100698386912890923190, −10.452117635416768516078642249990, −9.29490027554709157694800762252, −8.61433284353751380994932687267, −7.97101155861263630895837305118, −6.98112877665043908962994518050, −5.831427521461385082499934447055, −4.473774951354341674999181228525, −3.998439386478035116614087241494, −2.83155360809384327192212260346, −2.086320737193342177784291117458, −0.750322970293837274114390164831,
0.809109942373181210409112261779, 1.77363933285754488029086910974, 3.67610864316940762822732684171, 4.50617345828863583049401666244, 4.93598906496871939863371660002, 6.42881877869931034240334022186, 6.965853203335228422087247682972, 8.039796081367258683993662125164, 8.35208595197889090268122094953, 9.40419252638127449467826157669, 10.29806233740512237727992301481, 11.190747270670060470930227675866, 12.07979184503164683831100686179, 13.01984469955509579051801241020, 14.07860820341258462913287147626, 14.61018683067898427498441687345, 15.392968928195271599371614895090, 16.31055360932203086806910526241, 16.75949959925907619735836276566, 17.65404889684180572000424984542, 18.26335828297948087182853677387, 19.29851861773542524615583574213, 20.05171978560654079291725728469, 20.423806668748795830880699455674, 21.78329363454484193550316498555