Properties

Label 1-11-11.2-r1-0-0
Degree 11
Conductor 1111
Sign 0.957+0.288i0.957 + 0.288i
Analytic cond. 1.182111.18211
Root an. cond. 1.182111.18211
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.809 + 0.587i)2-s + (0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (−0.809 + 0.587i)5-s + (0.809 − 0.587i)6-s + (−0.309 − 0.951i)7-s + (−0.309 + 0.951i)8-s + (−0.809 − 0.587i)9-s − 10-s + 12-s + (0.809 + 0.587i)13-s + (0.309 − 0.951i)14-s + (0.309 + 0.951i)15-s + (−0.809 + 0.587i)16-s + (0.809 − 0.587i)17-s + (−0.309 − 0.951i)18-s + ⋯
L(s)  = 1  + (0.809 + 0.587i)2-s + (0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (−0.809 + 0.587i)5-s + (0.809 − 0.587i)6-s + (−0.309 − 0.951i)7-s + (−0.309 + 0.951i)8-s + (−0.809 − 0.587i)9-s − 10-s + 12-s + (0.809 + 0.587i)13-s + (0.309 − 0.951i)14-s + (0.309 + 0.951i)15-s + (−0.809 + 0.587i)16-s + (0.809 − 0.587i)17-s + (−0.309 − 0.951i)18-s + ⋯

Functional equation

Λ(s)=(11s/2ΓR(s+1)L(s)=((0.957+0.288i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.957 + 0.288i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(11s/2ΓR(s+1)L(s)=((0.957+0.288i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.957 + 0.288i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 1111
Sign: 0.957+0.288i0.957 + 0.288i
Analytic conductor: 1.182111.18211
Root analytic conductor: 1.182111.18211
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ11(2,)\chi_{11} (2, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 11, (1: ), 0.957+0.288i)(1,\ 11,\ (1:\ ),\ 0.957 + 0.288i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.503380081+0.2211997697i1.503380081 + 0.2211997697i
L(12)L(\frac12) \approx 1.503380081+0.2211997697i1.503380081 + 0.2211997697i
L(1)L(1) \approx 1.415747663+0.1740328837i1.415747663 + 0.1740328837i
L(1)L(1) \approx 1.415747663+0.1740328837i1.415747663 + 0.1740328837i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad11 1 1
good2 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
3 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
5 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
7 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
13 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
17 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
19 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
23 1+T 1 + T
29 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
31 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
37 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
41 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
43 1T 1 - T
47 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
53 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
59 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
61 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
67 1+T 1 + T
71 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
73 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
79 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
83 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
89 1+T 1 + T
97 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−45.30426327898638018804634367866, −43.63192017509203526976799880310, −42.45917275651500585448292842681, −40.66058066592356276517670187998, −39.22705738819166212922797709288, −38.395494452428109122979398955656, −37.01755954390176887573149124687, −34.72345992628301281730177232071, −32.799985112149809068419874207202, −31.87403308116394856064712507976, −30.758854343797428801601385292783, −28.4508199966808353191563583286, −27.61231692090569895478179228700, −25.294856636069449525514142678791, −23.38804121013922687721723923210, −21.88489757248339392930656813056, −20.5790557747237967713122828270, −19.23890660918179306832270433212, −16.003353712811180942448748166867, −14.94827047321579871059739778452, −12.73163403755865549814505940274, −11.00919009252031218454364175306, −8.95354546437232036116473143789, −5.27308657584208989337435824912, −3.41492187932220368062022478551, 3.54704109171945007666447637176, 6.63073045048494212311693469779, 7.88643465920150753487622877767, 11.59406426254877199887647483811, 13.33022743788218395645836666989, 14.674032161018154187712356107968, 16.64292363517938135933695505995, 18.7495375665351457827169284855, 20.50797618286869986017769960585, 22.95929393378876961523787194156, 23.62369920986579610417564305629, 25.38976369113433935050441838210, 26.67028496809013083238174485224, 29.55920151127941976080946946763, 30.615315398535949332903421061066, 31.76704292714201836153420720265, 33.60918441512861464269747264056, 35.0748181390130967490481952242, 36.103221852765725499410258250258, 38.421569250426374648790601150719, 39.91816544484692915524132036871, 41.34346950295061398221815956035, 42.601218189354830328691114239797, 43.13903733098448016886778132619, 45.571883708328470662009967870960

Graph of the ZZ-function along the critical line