L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (−0.809 + 0.587i)5-s + (0.809 − 0.587i)6-s + (−0.309 − 0.951i)7-s + (−0.309 + 0.951i)8-s + (−0.809 − 0.587i)9-s − 10-s + 12-s + (0.809 + 0.587i)13-s + (0.309 − 0.951i)14-s + (0.309 + 0.951i)15-s + (−0.809 + 0.587i)16-s + (0.809 − 0.587i)17-s + (−0.309 − 0.951i)18-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (−0.809 + 0.587i)5-s + (0.809 − 0.587i)6-s + (−0.309 − 0.951i)7-s + (−0.309 + 0.951i)8-s + (−0.809 − 0.587i)9-s − 10-s + 12-s + (0.809 + 0.587i)13-s + (0.309 − 0.951i)14-s + (0.309 + 0.951i)15-s + (−0.809 + 0.587i)16-s + (0.809 − 0.587i)17-s + (−0.309 − 0.951i)18-s + ⋯ |
Λ(s)=(=(11s/2ΓR(s+1)L(s)(0.957+0.288i)Λ(1−s)
Λ(s)=(=(11s/2ΓR(s+1)L(s)(0.957+0.288i)Λ(1−s)
Degree: |
1 |
Conductor: |
11
|
Sign: |
0.957+0.288i
|
Analytic conductor: |
1.18211 |
Root analytic conductor: |
1.18211 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ11(2,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 11, (1: ), 0.957+0.288i)
|
Particular Values
L(21) |
≈ |
1.503380081+0.2211997697i |
L(21) |
≈ |
1.503380081+0.2211997697i |
L(1) |
≈ |
1.415747663+0.1740328837i |
L(1) |
≈ |
1.415747663+0.1740328837i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
good | 2 | 1+(0.809+0.587i)T |
| 3 | 1+(0.309−0.951i)T |
| 5 | 1+(−0.809+0.587i)T |
| 7 | 1+(−0.309−0.951i)T |
| 13 | 1+(0.809+0.587i)T |
| 17 | 1+(0.809−0.587i)T |
| 19 | 1+(−0.309+0.951i)T |
| 23 | 1+T |
| 29 | 1+(−0.309−0.951i)T |
| 31 | 1+(−0.809−0.587i)T |
| 37 | 1+(0.309+0.951i)T |
| 41 | 1+(−0.309+0.951i)T |
| 43 | 1−T |
| 47 | 1+(0.309−0.951i)T |
| 53 | 1+(−0.809−0.587i)T |
| 59 | 1+(0.309+0.951i)T |
| 61 | 1+(0.809−0.587i)T |
| 67 | 1+T |
| 71 | 1+(−0.809+0.587i)T |
| 73 | 1+(−0.309−0.951i)T |
| 79 | 1+(0.809+0.587i)T |
| 83 | 1+(0.809−0.587i)T |
| 89 | 1+T |
| 97 | 1+(−0.809−0.587i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−45.30426327898638018804634367866, −43.63192017509203526976799880310, −42.45917275651500585448292842681, −40.66058066592356276517670187998, −39.22705738819166212922797709288, −38.395494452428109122979398955656, −37.01755954390176887573149124687, −34.72345992628301281730177232071, −32.799985112149809068419874207202, −31.87403308116394856064712507976, −30.758854343797428801601385292783, −28.4508199966808353191563583286, −27.61231692090569895478179228700, −25.294856636069449525514142678791, −23.38804121013922687721723923210, −21.88489757248339392930656813056, −20.5790557747237967713122828270, −19.23890660918179306832270433212, −16.003353712811180942448748166867, −14.94827047321579871059739778452, −12.73163403755865549814505940274, −11.00919009252031218454364175306, −8.95354546437232036116473143789, −5.27308657584208989337435824912, −3.41492187932220368062022478551,
3.54704109171945007666447637176, 6.63073045048494212311693469779, 7.88643465920150753487622877767, 11.59406426254877199887647483811, 13.33022743788218395645836666989, 14.674032161018154187712356107968, 16.64292363517938135933695505995, 18.7495375665351457827169284855, 20.50797618286869986017769960585, 22.95929393378876961523787194156, 23.62369920986579610417564305629, 25.38976369113433935050441838210, 26.67028496809013083238174485224, 29.55920151127941976080946946763, 30.615315398535949332903421061066, 31.76704292714201836153420720265, 33.60918441512861464269747264056, 35.0748181390130967490481952242, 36.103221852765725499410258250258, 38.421569250426374648790601150719, 39.91816544484692915524132036871, 41.34346950295061398221815956035, 42.601218189354830328691114239797, 43.13903733098448016886778132619, 45.571883708328470662009967870960